## ARKANSAS MATHEMATICS STANDARDS Grades K-8 Algebra I Geometry

### **Table of Contents**

| KINDERGARTEN MATH STANDARDS        | <br> |   | 7    |
|------------------------------------|------|---|------|
| NUMBER & PLACE VALUE               | <br> |   | 7    |
| Counting & Number Foundations      | <br> |   | 7    |
| Place Value                        | <br> |   | 7    |
| Comparison                         | <br> |   | 7    |
| COMPUTATION & ALGEBRAIC REASONING. | <br> |   | 7    |
| Operations & Properties            | <br> |   | 7    |
| Problem Solving                    | <br> |   | 7    |
| GEOMETRY & MEASUREMENT             | <br> |   | 8    |
| Shapes                             | <br> |   | 8    |
| Measurement Concepts               | <br> |   | 8    |
| Time & Money                       | <br> |   | 8    |
| DATA ANALYSIS                      | <br> |   | 8    |
| Charts, Graphs, & Tables           | <br> |   | 8    |
| GRADE 1 MATH STANDARDS             |      |   |      |
|                                    |      | _ |      |
| NUMBER & PLACE VALUE               |      |   | 9    |
| Counting                           |      |   | 9    |
| Place Value                        | <br> |   | 9    |
| Comparison                         | <br> |   | 9    |
| Fraction Foundations               | <br> |   | 9    |
| COMPUTATION & ALGEBRAIC REASONING. |      |   | 9    |
| Operations & Properties            | <br> |   | 9    |
| Problem Solving                    | <br> |   | . 10 |
| Algebraic Concepts                 |      |   | . 10 |
| GEOMETRY & MEASUREMENT             |      |   | . 10 |
| Shapes                             | <br> |   | . 10 |
| Length & Width                     | <br> |   | . 10 |
| Time & Money                       | <br> |   | . 10 |
| DATA ANALYSIS                      | <br> |   | 11   |
| Charts, Graphs, & Tables           | <br> |   | . 11 |
| GRADE 2 MATH STANDARDS             |      |   | . 12 |
|                                    |      |   |      |
| NUMBER & PLACE VALUE               |      |   |      |
| Counting                           |      |   |      |
| Place Value                        |      |   |      |
| Comparison                         |      |   |      |
| Fraction Foundations               |      |   |      |
| COMPUTATION & ALGEBRAIC REASONING. |      |   |      |
| Operations & Properties            |      |   |      |
| Problem Solving                    |      |   |      |
| Algebraic Concepts                 |      |   |      |
| GEOMETRY & MEASUREMENT             |      |   | _    |
| Shapes                             | <br> |   |      |
| Lenath & Width                     |      |   | 13   |

| Perimeter, Area, & Volume         | 13 |
|-----------------------------------|----|
| Time & Money                      | 14 |
| Data Analysis                     | 14 |
| Charts, Graphs, & Tables          | 14 |
| GRADE 3 MATH STANDARDS            | 15 |
|                                   |    |
| Number & Place Value              |    |
| Place Value                       |    |
| Comparison                        |    |
| Fraction Foundations              |    |
| Equivalent Fractions              |    |
| COMPUTATION & ALGEBRAIC REASONING |    |
| Operations & Properties           |    |
| Problem Solving                   |    |
| Algebraic Concepts                |    |
| GEOMETRY & MEASUREMENT            |    |
| Shapes                            |    |
| Length & Width                    |    |
| Perimeter, Area, & Volume         |    |
| Time                              |    |
| DATA ANALYSIS                     | 17 |
| Charts, Graphs, & Tables          | 17 |
| GRADE 4 MATH STANDARDS            | 18 |
| Number & Place Value              | 18 |
| Place Value                       |    |
| Comparison                        |    |
| Fraction Foundations              |    |
| Equivalent Fractions              |    |
| COMPUTATION & ALGEBRAIC REASONING |    |
| Operations & Properties           |    |
| Problem Solving                   |    |
| Algebraic Concepts.               |    |
| GEOMETRY & MEASUREMENT            |    |
| Shapes                            |    |
| Perimeter, Area, & Volume         |    |
| Time, Money, & Conversions        |    |
| DATA ANALYSIS                     |    |
| Charts, Graphs, & Tables          |    |
| GRADE 5 MATH STANDARDS            |    |
| Number & Place Value              |    |
| Place Value                       |    |
| Comparison                        |    |
| Fraction Foundations              |    |
| COMPUTATION & ALGEBRAIC REASONING |    |
| Operations & Properties           |    |

| Problem Solving                  | 2 |
|----------------------------------|---|
| Algebraic Concepts               |   |
| GEOMETRY & MEASUREMENT           | 2 |
| Shapes                           |   |
| Perimeter, Area, & Volume        |   |
| Conversions                      |   |
| Coordinate Plane System          |   |
| Data Analysis                    |   |
| Charts, Graphs, & Tables         |   |
| GRADE 6 MATH STANDARDS           | 2 |
| Number Concepts & Computations   | 2 |
| Rational Numbers                 |   |
| Rational Number Operations       |   |
| Common Factors and Multiples     |   |
| PROPORTIONAL RELATIONSHIPS       |   |
| Ratio & Rates                    | 2 |
| ALGEBRA                          |   |
| Expressions                      |   |
| Equations & Inequalities         |   |
| GEOMETRY & MEASUREMENT           | 2 |
| Area, Volume, & Surface Area     |   |
| Coordinate Plane System          |   |
| Conversions                      |   |
| STATISTICS & PROBABILITY         |   |
| Statistical & Nonstatistical     |   |
| Measures of Center               |   |
| Measures of Variation            | 2 |
| Numerical Data                   |   |
| GRADE 7 MATH STANDARDS           | • |
|                                  |   |
| Number Concepts & Computations   | 2 |
| Rational Numbers                 |   |
| Rational Number Operations       |   |
| Proportional Relationships       |   |
| Ratio & Rates                    |   |
| Constant of Proportionality      |   |
| ALGEBRA                          |   |
| Expressions                      |   |
| Equations & Inequalities         |   |
| Relationships between Quantities |   |
| GEOMETRY & MEASUREMENT           |   |
| Area, Volume, & Surface Area     | 2 |
| Cross Sections                   | 2 |
| Triangles & Angles               | 2 |
| Scale                            | 3 |
| STATISTICS & PROBABILITY         | 3 |
| Numerical Data                   | - |

| Sampling & Population                              |        |
|----------------------------------------------------|--------|
| Probability                                        | 30     |
| GRADE 8 MATH STANDARDS                             | <br>32 |
| Number Concepts & Computations                     | <br>32 |
| Rational & Irrational Numbers                      | <br>32 |
| Rational Number Operations                         | <br>32 |
| FUNCTIONS                                          | <br>32 |
| Proportional & Linear Relationships                | <br>32 |
| Functions                                          | <br>32 |
| ALGEBRA                                            | <br>33 |
| Equations & Inequalities                           |        |
| Systems of Equations                               |        |
| GEOMETRY & MEASUREMENT                             |        |
| Area, Volume, & Surface Area                       |        |
| Cross Sections                                     |        |
| Pythagorean Theorem                                |        |
| Transformations & Congruence on a Coordinate Plane |        |
| STATISTICS & PROBABILITY                           |        |
| Bivariate Data                                     |        |
| Probability                                        | <br>34 |
| ALGEBRA I MATH STANDARDS                           | <br>35 |
| Expressions                                        | <br>30 |
| Polynomials, Roots, & Exponent Laws                |        |
| FUNCTIONS                                          |        |
| Domain & Range, Function Notation                  |        |
| Construct & Compare                                |        |
| LINEAR FUNCTIONS, EQUATIONS, & INEQUALITIES        |        |
| Create & Solve                                     |        |
| Interpret Key Features                             |        |
| Systems of Equations & Inequalities                |        |
| Graphing & Transformations                         |        |
| Statistical Relationships                          |        |
| QUADRATIC FUNCTIONS & EQUATIONS                    |        |
| Create & Solve                                     |        |
| Interpret Key Features                             | <br>37 |
| Graphing & Transformations                         |        |
| Statistical Relationships                          |        |
| EXPONENTIAL FUNCTIONS & EQUATIONS                  |        |
| Create & Solve                                     | <br>38 |
| Interpret Key Features                             | <br>38 |
| Graphing                                           |        |
| Statistical Relationships                          |        |
| STATISTICS & PROBABILITY                           | <br>38 |
| Numerical Data                                     | <br>38 |
| Bivariate Data                                     | <br>39 |
| GEOMETRY MATH STANDARDS                            | 40     |
|                                                    |        |

| RIGHT TRIANGLES                               | 40 |
|-----------------------------------------------|----|
| Special Right Triangles & Pythagorean Theorem | 40 |
| Trigonometry Ratios                           | 40 |
| Circles                                       | 40 |
| Circle Relationships                          | 40 |
| Equation of a Circle                          | 40 |
| GEOMETRIC FIGURES                             | 41 |
| Three-Dimensional                             | 41 |
| Two-Dimensional                               | 41 |
| Geometric Probability                         | 41 |
| Lines & Angles                                | 42 |
| Define & Construct                            | 42 |
| Coordinate Geometry                           | 42 |
| Parallel & Perpendicular Lines                | 42 |
| Transformations                               | 42 |
| Coordinate Plane                              | 42 |
| Plane                                         | 42 |
| SIMILARITIES & CONGRUENCE                     | 43 |
| Similarity                                    | 43 |
| Triangle Congruence                           | 43 |
|                                               |    |

### KINDERGARTEN MATH STANDARDS

### Number & Place Value

### **Counting & Number Foundations**

Students know the number names and count sequence while exploring the relationships between numbers.

- K.NPV.1: Count to 100 by ones and tens; count forward by ones from any given number up to 100.
- K.NPV.2: Count a set of objects up to 20 using one-to-one correspondence, demonstrating that the last number stated
  - indicates the number of objects in the set regardless of the arrangement.
- K.NPV.3: Identify the position of objects in a set using ordinal numbers (first, second, third, etc.).
- K.NPV.4: Identify quickly a number of items in a set from 0 to 10 without counting.

### Place Value

Students understand the base ten place value system.

- **K.NPV.5**: Read, write, and represent whole numbers from 0 to 20.
- K.NPV.6: Show equivalent forms of whole numbers up to 20 as groups of tens and ones, using manipulatives and
  - drawings.

### Comparison

Students use place value understanding to compare numbers.

- K.NPV.7: Use matching and counting strategies to compare the number of objects in one group to the number of
  - objects in another group (0 to 10) using the terms greater than, less than, or equal.
- K.NPV.8: Compare two whole numbers, using the terms greater than, less than, or equal.

### **Computation & Algebraic Reasoning**

### **Operations & Properties**

Students perform operations using place value understanding and properties of operations.

- **K.CAR.1.:** Use objects, fingers, mental images, drawings, sounds, acting out situations, or verbal explanations to
  - represent addition and subtraction from 0 to 10.
- K.CAR.2: Use objects or drawings to decompose numbers less than or equal to 10 into pairs in more than one way,
  - recording each decomposition.
- K.CAR.3: Use a drawing or equation to find the number that makes 10 when added to a given number.
- K.CAR.4: Use manipulatives and various strategies to fluently add and subtract within 10.

### **Problem Solving**

Students to solve real-world problems.

K.CAR.5: Solve real-world problems involving addition and subtraction within 10, using objects, drawings, or equations

to represent the problem.

### **Geometry & Measurement**

### **Shapes**

Students analyze attributes of shapes to develop generalizations about their properties.

- **K.GM.1**: Describe the positions of objects and geometric shapes in the environment.
  - Terms include: inside, outside, between, above, below, near, far, under, over, up, down, behind, in front of, next to, to the left of, and to the right of
- **K.GM.2:** Name shapes correctly regardless of their orientation or overall size.
  - Shapes include: squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres
- **K.GM.3:** Identify two-dimensional attributes of three-dimensional objects.
- **K.GM.4:** Analyze and sort a variety of two and three-dimensional shapes using informal language to describe their similarities, differences, and other attributes.
- K.GM.5: Compose and draw shapes found in the world using objects (e.g., straws, toothpicks, clay balls).

### **Measurement Concepts**

Students develop understanding of measurement terms and concepts.

**K.GM.6:** Make direct comparisons of the length, capacity, weight, and temperature of objects, recognizing which object is shorter/longer, lighter/heavier, warmer/cooler, or holds more.

### Time & Money

Students explore time and money values and concepts.

- K.GM.7: Understand concepts of time, recognizing that clocks and calendars are tools that measure time.
  - Concepts of time include: morning, afternoon, evening, today, yesterday, tomorrow, day, week, month, and year
- **K.GM.8:** Identify pennies and dimes by name and value.

### **Data Analysis**

### Charts, Graphs, & Tables

Students organize and analyze data.

**K.DA.1**: Collect, sort, and organize data into two or three categories, using real-object graphs and picture graphs.

**Return to the Table of Contents** 

### **GRADE 1 MATH STANDARDS**

### Number & Place Value

### Counting

Students extend the counting sequence.

- **1.NPV.1:** Count forward and back within 120 by ones and tens from any given whole number.
- **1.NPV.2:** Skip count forward by multiples of fives within 120.

### Place Value

Students understand the base ten place value system.

- **1.NPV.3:** Explain the place value of ones and tens in two-digit numbers, using concrete models, diagrams, numbers, or words
- **1.NPV.4**: Read, write, and represent whole numbers up to 120, using concrete models or drawings, word form, base ten numerals, and expanded form.
- **1.NPV.5:** Use concrete models or drawings to subtract multiples of 10 from multiples of 10 (within the range of 10-90), relate the strategy to a written expression or equation, and explain the reasoning used to solve.
- **1.NPV.6:** Use mental strategies to find 10 more or 10 less than a given two-digit number.

### Comparison

Students use place value understanding to compare numbers.

1.NPV.7: Compare two two-digit numbers using symbols (<, =, >) based on the value of tens and ones in the given numbers.

### **Fraction Foundations**

Students build a conceptual understanding of fractions.

**1.NPV.8:** Partition circles and rectangles into two and four equal shares, describing the shares using the words halves, fourths, and quarters; understand that decomposing into more equal pieces creates smaller pieces.

### **Computation & Algebraic Reasoning**

### **Operations & Properties**

Students perform operations using place value understanding and properties of operations.

- **1.CAR.1:** Add and subtract fluently within 10 with mastery by the end of first grade.
- **1.CAR.2:** Use computational fluency to add and subtract within 20 using manipulatives and/or a variety of strategies.
- **1.CAR.3:** Apply properties of operations to add and subtract within 20.
- **1.CAR.4:** Use concrete models or drawings to add within 100, including a two-digit number and a one-digit number as well as a two-digit number and a multiple of ten; relate strategy used to a written expression or equation and explain reasoning.

**1.CAR.5:** Demonstrate the relationship between addition and subtraction by solving problems, using an inverse operation.

### **Problem Solving**

Students solve real-world problems.

- **1.CAR.6:** Solve real-world problems involving addition and subtraction within 20.
  - Problem types include: adding to, taking from, putting together, taking apart, and comparing with unknowns present throughout the addition and subtraction problem.
- 1.CAR.7: Solve real-world problems involving addition of three whole numbers whose sum is less than or equal to 20.

### **Algebraic Concepts**

Students develop and apply understanding of foundational algebraic concepts.

- **1.CAR.8:** Apply understanding of the equal sign to determine if equations involving addition and subtraction are true or false.
- 1.CAR.9: Determine the unknown whole number in an addition or subtraction equation relating three whole numbers.

### Geometry & Measurement

### Shapes

Students analyze attributes of shapes to develop generalizations about their properties.

- 1.GM.1: Understand the difference between defining attributes (e.g., triangles are closed and three-sided shapes) and non-defining attributes (e.g., color, orientation, overall size), using that understanding to build and draw shapes that exhibit defining attributes.
- **1.GM.2**: Create a composite shape using two-dimensional or three-dimensional shapes.
  - Two-dimensional include: rectangle, square, trapezoid, triangle, hexagon, half circle, and quarter circle
  - Three-dimensional include: cube, rectangular prism, cone, and cylinder

### Length & Width

Students investigate measurement with non-standard units.

- **1.GM.3:** Express the length of an object as a whole number of units by laying multiple copies of a shorter object end-to-end, understanding that the length of one object is equal to the number of same-size units that span the object with no gaps or overlaps.
- 1.GM.4: Order three objects by their length, indirectly comparing the lengths of two objects by using a third object.

### Time & Money

Students explore time and money values and concepts.

- **1.GM.5:** Tell and write time to the nearest hour and half hour using analog clocks; understand how to read hours and minutes using digital clocks.
- **1.GM.6:** Identify coins by name and value, including penny, nickel, dime, and quarter.

**1.GM.7:** Count collections of like coins including pennies, nickels, and dimes to determine their total value up to 100 cents.

### **Data Analysis**

### Charts, Graphs, & Tables

Students organize and analyze data.

- **1.DA.1:** Organize, represent, and interpret data with up to three categories (e.g., tally tables, picture graphs, bar graphs).
- **1.DA.2:** Ask and answer questions about the total number represented such as how many in each category and how many more or less in one category compared to another.



### **GRADE 2 MATH STANDARDS**

### Number & Place Value

### Counting

Students extend the counting sequence.

2.NPV.1: Count within 1,000 forwards and backwards by ones, tens, and hundreds from any given number.

### Place Value

Students understand the base ten place value system.

- **2.NPV.2:** Identify the value of hundreds, tens, and ones place in a three-digit number.
- **2.NPV.3:** Read, write, and represent whole numbers up to 1,000 using concrete models or drawings, number names, and a variety of expanded forms.
- **2.NPV.4:** Mentally add 10 or 100 to a given number in the range of 100-900 and mentally subtract 10 or 100 from a given number in the range of 100-900.

### Comparison

Students use place value understanding to compare numbers.

2.NPV.5: Compare two three-digit numbers using symbols (<, =, >) based on the value of hundreds, tens, and ones in the given numbers.

### **Fraction Foundations**

Students build a conceptual understanding of fractions.

- **2.NPV.6:** Partition circles and rectangles into two, three, or four equal shares, describing the shares using the words halves, thirds, and fourths (or quarters).
- **2.NPV.7:** Recognize that equal shares of identical wholes need not have the same shape.

### **Computation & Algebraic Reasoning**

### **Operations & Properties**

Students perform operations using place value understanding and properties of operations.

- **2.CAR.1:** Use mental strategies to fluently add and subtract within 20 with mastery by the end of second grade.
- **2.CAR.2:** Use computational fluency to add and subtract within 100 using strategies based on place value, properties of operations, or the relationship between addition and subtraction.
- **2.CAR.3:** Add up to four two-digit numbers with sums not exceeding 100 using strategies based on place value and properties of operations.
- **2.CAR.4:** Use a number line to solve addition and subtraction problems within 100.
- **2.CAR.5:** Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.

2.CAR.6: Use concrete models, drawings, or equations to solve addition and subtraction problems within 1000.

### **Problem Solving**

Students solve real-world problems.

**2.CAR.7:** Solve one and two-step real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing unknowns in all positions.

### **Algebraic Concepts**

Students develop and apply understanding of foundational algebraic concepts.

**2.CAR.8:** Determine whether a group of objects up to 20 has an odd or even number of members; write an equation to express an even number as a sum of two equal addends.

### **Geometry & Measurement**

### Shapes

Students analyze attributes of shapes to develop generalizations about their properties.

- **2.GM.1:** Identify, describe, and draw two-dimensional shapes.
  - Shapes include: triangles, regular pentagons, regular hexagons, and quadrilaterals (square, rectangle, trapezoid, parallelogram, rhombus)
- **2.GM.2:** Identify and describe three-dimensional shapes based on the shape, number of faces, number of edges, and number of vertices.
  - Shapes include: rectangular prisms, cubes, and square-based pyramids

### Length & Width

Students investigate measurement using rulers.

- **2.GM.3:** Select appropriate measurement tools to estimate and measure the length of an object to the nearest whole inch or whole centimeters.
- 2.GM.4: Demonstrate how the length of an object does not change, regardless of the units used to measure it, by measuring the length of an object twice; use two different length units, describing how the two measurements relate to the size of the chosen unit.
- **2.GM.5:** Measure to determine how much longer or shorter one object is than another, expressing the length difference in terms of a standard length whole unit.
- **2.GM.6:** Solve real-world problems involving lengths of the same units, using addition and subtraction within 100.

### Perimeter, Area, & Volume

Students explore the perimeter and area of shapes.

- **2.GM.7:** Solve real-world and mathematical problems to find the perimeter of polygons.
- **2.GM.8:** Partition a rectangle into rows and columns of same-size squares, counting the total number of squares to find the area.

### Time & Money

Students explore time and money values and concepts.

- **2.GM.9:** Using an analog clock, tell and write time to the nearest five minutes using colon notation and indicate a.m. or p.m.
- **2.GM.10:** Describe relationships of time.
  - Times include: seconds in a minute; minutes in an hour; hours in a day; days in a week; and days, weeks, and months in a year
- **2.GM.11:** Solve real-world problems involving addition and subtraction of time intervals in half hours or hours.
- **2.GM.12:** Count collections of mixed coins and solve real-world problems involving quarters, dimes, nickels, and pennies within 99¢ and whole dollar amounts.

### **Data Analysis**

### Charts, Graphs, & Tables

Students organize and analyze data.

- **2.DA.1:** Use bar graphs, picture graphs, and line plots to organize and represent data, interpreting data with up to four categories.
- **2.DA.2:** Ask and answer simple put together, take apart, and compare problems, using information presented in the bar graphs, picture graphs, and line plots.

**Return to the Table of Contents** 

### **GRADE 3 MATH STANDARDS**

### Number & Place Value

### Place Value

Students understand the base ten place value system.

- **3.NPV.1:** Round four-digit whole numbers to the nearest 10 or 100, using place value understanding.
- **3.NPV.2:** Identify the value of thousands, hundreds, tens, and ones place in a four-digit number.
- **3.NPV.3:** Read and write whole numbers up to 10,000, using base ten numerals, word form, and a variety of expanded forms.

### Comparison

Students use place value understanding to compare numbers.

- **3.NPV.4:** Compare two four-digit numbers using symbols (<, =, >) based on the value of thousands, hundreds, tens, and ones in the given numbers.
- **3.NPV.5:** Compare two fractions with the same numerator or denominator by reasoning about their size based on the same whole; use symbols (<, =, >) and justify the conclusion using visual fraction models, concrete objects, or words.

### **Fraction Foundations**

Students build a conceptual understanding of fractions.

- 3.NPV.6: Identify fractions as parts of a whole and parts of a collection or set.
  - Fractions include: denominators 2, 3, 4, 6, and 8
- **3.NPV.7:** Partition squares, regular hexagons, and equilateral triangles into parts with equal shares, explaining the shares of each part as a unit fraction of the whole.
  - Fractions include: denominators 2, 3, 4, 6, and 8
- **3.NPV.8:** Identify and represent a unit fraction as a number on the number line.
  - Fractions include: denominators 2, 3, 4, 6, and 8
- **3.NPV.9:** Identify and represent a non-unit fraction as a number on the number line, including fractions greater than one.
  - Fractions include: denominators 2, 3, 4, 6, and 8
- **3.NPV.10:** Decompose and compose a non-unit fraction a/b as the quantity formed by the sum of unit fractions.
  - Fractions include: denominators 2, 3, 4, 6, and 8

### **Equivalent Fractions**

Students develop and apply equivalent fraction understanding.

- **3.NPV.11:** Use number lines and visual models to recognize and generate equivalent fractions, explaining how they are equivalent in real-world and mathematical situations.
  - Fractions include: denominators 2, 3, 4, 6, and 8

### **Computation & Algebraic Reasoning**

### **Operations & Properties**

Students perform operations using place value understanding and properties of operations.

- **3.CAR.1:** Use computational fluency to add and subtract three-digit whole numbers, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.
- **3.CAR.2:** Use basic fact fluency to multiply and divide whole numbers with mastery by the end of third grade.
  - Knowing all products with factors up to and including 12 and the corresponding division facts from the products with factors up to and including 12.
  - Using strategies such as the relationship between multiplication and division (e.g., Knowing that  $8 \cdot 5 = 40$ , one knows  $40 \div 5 = 8$ ) or properties of operations.
- **3.CAR.3:** Apply properties of operations as strategies to multiply and divide.
  - Properties include: Distributive, Commutative, and Associative Properties of Multiplication
- 3.CAR.4: Use strategies to multiply one-digit numbers by multiples of 10 ranging from 10-90; strategies are based on place value and properties of operations (e.g.,  $9 \cdot 80, 5 \cdot 60$ ).
- **3.CAR.5:** Identify arithmetic patterns including, but not limited to, patterns in an addition or multiplication table, explaining use of properties of operations appropriate to the pattern.

### **Problem Solving**

Students solve real-world problems.

- **3.CAR.6:** Solve real-world problems using multiplication and division within 100 involving equal groups, arrays, partitive and measurement division.
- **3.CAR.7:** Solve two-step real-word situations using addition, subtraction, multiplication, and division, representing these problems using equations with a symbol standing for an unknown quantity.

### **Algebraic Concepts**

Students develop and apply an understanding of foundational algebraic concepts.

- **3.CAR.8:** Determine the unknown whole number in a multiplication or division equation relating three whole numbers.
- **3.CAR.9:** Understand division as an unknown-factor problem.

### Geometry & Measurement

### **Shapes**

Students analyze attributes of shapes to develop generalizations about their properties.

- **3.GM.1:** Understand that quadrilaterals in different categories may share attributes; those attributes (e.g., four equivalent sides) can define a larger category (e.g., quadrilaterals) or subcategory (e.g., rhombus and square).
- **3.GM.2:** Identify perpendicular and parallel lines, as well as right angles in two-dimensional shapes and real-world surroundings or objects.
- **3.GM.3:** Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, identifying and/or drawing examples of quadrilaterals that do not belong to any of these subcategories.

### Length & Width

Students investigate measurement using rulers.

**3.GM.4**: Measure lengths of objects to the nearest half and quarter inch, using a ruler.

### Area & Volume

Students calculate the area of rectangles and liquid volume.

- **3.GM.5:** Describe area as the number of unit squares that cover a plane figure without gaps and overlaps.
- **3.GM.6:** Find the area of a rectangle with whole number side lengths by modeling with unit squares and multiplying the side lengths to show the results are the same.
- **3.GM.7:** Multiply side lengths to find areas of rectangles with whole number side lengths in the context of solving realworld and mathematical problems.
- **3.GM.8:** Measure and estimate liquid volumes and masses of objects using standard units.
- **3.GM.9:** Solve one-step real-world problems involving liquid volumes and masses of objects in the same units, using all four operations.

### Time

Students tell time and solve problems about elapsed time.

- **3.GM.10:** Tell and write time to the nearest minute, using analog clocks.
- **3.GM.11:** Solve word problems involving addition and subtraction of time intervals in minutes.

### **Data Analysis**

### Charts, Graphs, & Tables

Students organize and analyze data.

- **3.DA.1**: Represent a data set with multiple categories, using a scaled picture graph, scaled bar graph, and a line plot.
- **3.DA.2:** Solve one and two-step problems, using categorical data represented with a scaled picture graph, scaled bar graph, and a line plot.

**Return to the Table of Contents** 

### **GRADE 4 MATH STANDARDS**

### Number & Place Value

### Place Value

Students understand the base ten place value system.

- 4.NPV.1: Recognize that a digit in a given place represents ten times what it represents in the place to its right.4.NPV.2: Read and write whole numbers up to 1,000,000 using base ten numerals, word form, and a variety of expanded forms.
- **4.NPV.3**: Use place value understanding to round five-digit and six-digit whole numbers to any place.

### Comparison

Students use place value understanding to compare numbers.

- **4.NPV.4:** Compare two five-digit whole numbers and six-digit whole numbers, using symbols (<, =, >) to record the results of comparisons.
- 4.NPV.5: Compare two fractions with different numerators and different denominators using symbols (<, =, >) to record the results of comparisons (e.g., by creating common denominators or numerators or by comparing to a benchmark of 0, ½, 1).
- **4.NPV.6:** Compare two decimals to the hundredths place, using symbols (<, =, >) to record the results of comparisons.

### **Fraction Foundations**

Students develop a conceptual understanding of fractions.

- **4.NPV.7:** Decompose fractions, including fractions greater than one and mixed numbers, into unit fractions, using concrete models, drawings, and/or the number line.
  - Fractions include denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.

### **Equivalent Fractions**

Students develop and apply equivalent fraction understanding.

- **4.NPV.8**: Explain why a fraction a/b is equivalent to a fraction  $(n \cdot a)/(n \cdot b)$ , using visual fraction models, generating equivalent fractions using the principle  $a/b = (n \cdot a)/(n \cdot b)$ .
  - Fractions include denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100.
- **4.NPV.9:** Add two fractions with denominators of 10 and 100 by expressing the denominator of 10 as an equivalent fraction with a denominator of 100.
- **4.NPV.10:** Apply decimal notation for fractions with denominators 10 or 100.

### Computation & Algebraic Reasoning

### **Operations & Properties**

Students perform operations, using place value understanding and properties of operations.

- **4.CAR.1:** Find the factor pairs for a given number in the range of 1-100, identifying whether a number is prime or composite; determine whether a given whole number in the range of 1-100 is a multiple of a given one-digit number.
- **4.CAR.2:** Use computational fluency to add and subtract whole numbers up to 1,000,000 by using strategies and algorithms, including the standard algorithm, with mastery by the end of fourth grade.
- **4.CAR.3:** Use strategies based on place value and the properties of operations to multiply four-digit by one-digit whole numbers and two two-digit whole numbers.
- **4.CAR.4:** Use strategies based on place value, the properties of operations, and the relationship between multiplication and division to divide whole numbers with four-digits by one-digit divisors; quotients should be with and without whole number remainders.
- **4.CAR.5:** Add and subtract fractions, including mixed numbers, with like denominators, using visual fraction models and equations.
  - Fractions include: denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100
- **4.CAR.6:** Multiply a fraction by a whole number using visual fraction models and equations.
  - Fractions include: denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100

### **Problem Solving**

Students solve real-world problems.

- **4.CAR.7:** Solve real-world problems involving multiplicative comparison, using drawings and/or equations with a symbol for the unknown number, and distinguish between multiplicative comparison and additive comparison.
- **4.CAR.8:** Solve multi-step, real-world problems posed with whole numbers and having whole-number answers, using addition, subtraction, multiplication, and division; include problems in which remainders must be interpreted and represent these problems using equations with symbols standing for the unknown quantity.
- **4.CAR.9:** Solve real-world problems involving the addition and subtraction of fractions; include mixed numbers with like denominators, using visual fraction models or equations.
  - Fractions include: denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100
- **4.CAR.10:** Solve real-word problems involving the multiplication of a fraction by a whole number using visual fraction models or equations.
  - Fractions include: denominators 2, 3, 4, 5, 6, 8, 10, 12, and 100

### **Algebraic Concepts**

Students develop and apply an understanding of foundational algebraic concepts.

**4.CAR.11:** Generate a number or shape pattern that follows a given rule, identifying apparent features of the pattern that are not explicit in the rule itself.

### **Geometry & Measurement**

### **Shapes**

Students expand knowledge of shapes by analyzing sides and angles.

**4.GM.1:** Identify angles as geometric shapes that are formed where two rays share a common endpoint, understanding that angles are measured with reference to a circle so that an angle that turns through a 1/360 of a circle is

- called a "one-degree angle" and an angle that turns through n one-degree angles is said to have an angle measure of n degree.
- **4.GM.2:** Measure angles in whole-number degrees, using a protractor, drawing angles of specified measure.
- **4.GM.3:** Solve real-word problems finding unknown angle measures, using addition and subtraction when an angle is decomposed into non-overlapping parts.
- **4.GM.4:** Identify and draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines, identifying these in quadrilaterals and triangles.
- **4.GM.5:** Classify two-dimensional figures based on the presence or absence of parallel lines, perpendicular lines, or angles of a specified size, involving quadrilaterals and triangles.
  - Shapes include: quadrilaterals (trapezoid, parallelogram, rectangle, square, rhombus) and triangles (right, acute, obtuse)
- **4.GM.6:** Identify and/or draw lines of symmetry for a two-dimensional figure.

### Perimeter, Area, & Volume

Students calculate the perimeter of polygons, area of rectangles, and liquid volume.

**4.GM.7:** Apply the area and perimeter formulas for rectangles and figures composed of two or more rectangles in realworld situations.

### Time, Money, & Conversions

Students apply measurement knowledge to solve real-world problems.

- **4.GM.8:** Convert measurements of length, weight/mass, and liquid volume within the same system of measurement, metric and customary, expressing measurements from a larger unit in terms of a smaller unit.
- **4.GM.9:** Solve real-world problems involving time intervals that may cross the hour.
- **4.GM.10**: Solve real-world problems involving addition and subtraction of money, including the ability to make change.
- **4.GM.11:** Solve real-world problems involving distances, liquid volume, and masses of objects, including problems that require expressing measurements given in a larger unit in terms of a smaller unit.

### Data Analysis

### Charts, Graphs, & Tables

Students organize and analyze data.

- **4.DA.1:** Collect and interpret data from observations, surveys, and experiments; represent data using frequency tables and scaled bar graphs.
- **4.DA.2:** Use a line plot to display a data set of measurements in fractions of a unit, solving problems involving addition and subtraction of fractions with like denominators using data presented in line plots.

**Return to the Table of Contents** 

### **GRADE 5 MATH STANDARDS**

### Number & Place Value

### Place Value

Students understand the base ten place value system.

- **5.NPV.1:** Recognize that, in a multi-digit number, a digit in a given place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.
- **5.NPV.2:** Explain patterns in the number of zeros and/or the decimal point when multiplying or dividing a number by a power of 10, using whole-number exponents to denote powers of 10.
- **5.NPV.3:** Read and write decimals to thousandths, using base-ten numerals, word form, and a variety of expanded forms.
- **5.NPV.4**: Apply place value understanding to round decimals to any place up to the thousandths.

### Comparison

Students use place value understanding to compare numbers.

**5.NPV.5:** Compare two decimals to thousandths based on the value of the digits in each place, using symbols (<, =, >) to record the results of comparisons.

### **Fraction Foundations**

Students build a conceptual understanding of fractions.

**5.NPV.6:** Use visual models to explain the product of multiplying a whole number by a fraction greater than and less than one.

### **Computation & Algebraic Reasoning**

### **Operations & Properties**

Students perform operations using place value understanding and properties of operations.

- **5.CAR.1:** Use computational fluency to multiply multi-digit whole numbers by using strategies and algorithms, including the standard algorithm, with mastery by the end of fifth grade.
- **5.CAR.2:** Calculate whole number quotients of whole numbers with up to four-digit dividends and two-digit divisors using strategies based on place value, properties of operations, divisibility rules, and the relationship between multiplication and division.
- **5.CAR.3:** Add and subtract decimals to the hundredths using concrete models or drawings and strategies based on place value, properties of operations, or the relationship between addition and subtraction.
- **5.CAR.4:** Multiply and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, or the relationship between multiplication and division.
- **5.CAR.5:** Add and subtract fractions with like and unlike denominators by using equivalent fractions  $\{a/b = (n \cdot a)/(n \cdot b)\}$  to create common denominators; include real-world problems.
  - Fractions include: mixed numbers
- **5.CAR.6:** Interpret and solve fractions as division problems,  $(a/b = a \div b)$ , where a and b are natural numbers.

- **5.CAR.7:** Use visual models and equations to multiply whole numbers by fractions and fractions by fractions, including mixed numbers and fractions greater than one.
- **5.CAR.8:** Apply previous understanding of division to divide unit fractions by whole numbers and whole numbers by unit fractions.

### **Problem Solving**

Students solve real-world problems.

- **5.CAR.9:** Solve and create real-world problems involving multiplication of fractions and mixed numbers.
- **5.CAR.10:** Solve real-world problems involving the division of natural numbers leading to answers in the form of fractions or mixed numbers using visual models and equations.
- **5.CAR.11:** Solve real-world problems involving the division of unit fractions by whole numbers and whole numbers by unit fractions, using visual fraction models and equations.

### Algebraic Concepts

Students develop and apply an understanding of foundational algebraic concepts.

- **5.CAR.12:** Evaluate numerical expressions with parentheses or brackets and exponents with the base of ten, using the Order of Operations.
- **5.CAR.13:** Write simple expressions that record calculations with numbers, interpreting numerical expressions without evaluating them.
- **5.CAR.14:** Generate two numerical patterns given two rules, identifying the relationship between the corresponding terms by graphing the terms in the first quadrant of the coordinate grid.

### Geometry & Measurement

### Shapes

Students expand knowledge of shapes by analyzing sides and angles.

- **5.GM.1:** Classify two-dimensional figures in a hierarchy based on properties with the focus on quadrilaterals and triangles when teaching hierarchies.
  - Shapes to include: quadrilaterals (trapezoid, parallelogram, rectangle, square, rhombus, kite) and triangles (right, acute, obtuse, scalene, isosceles, equilateral)

### Area & Volume

Students solve the area of rectangles and volume of rectangular prisms.

- **5.GM.2:** Find the area of a rectangle with fractional and/or mixed number side lengths by using models and multiplying the fractional side lengths showing that both strategies produce the same area.
- **5.GM.3:** Measure volumes by counting unit cubes using cubic cm  $(cm^3)$ , cubic in  $(in^3)$ , cubic ft  $(ft^3)$ , and improvised units  $(u^3)$ .
- **5.GM.4:** Solve real-world and mathematical problems involving the volume of rectangular prisms with whole number side lengths by applying the formulas  $(V = l \cdot w \cdot h)$  or  $V = B \cdot h$  and the properties of operations.
- **5.GM.5:** Solve real-world problems by calculating volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts.

### Conversions

Students apply measurement knowledge to solve real-world problems.

**5.GM.6:** Convert among different-sized standard measurement units within the same system, including both the metric and customary systems, and solve multi-step, real-world problems using conversions.

### Coordinate Plane System

Students develop an understanding of the coordinate system.

- **5.GM.7:** Graph points with whole number coordinates on a coordinate plane in the first quadrant, explaining how the coordinates relate to the horizontal and vertical axes to describe the location of points in the plane.
- **5.GM.8:** Represent real-world and mathematical problems by graphing points in the first quadrant on a coordinate plane, interpreting coordinate values of points in the context of the situation.

### Data Analysis

### Charts, Graphs, & Tables

Students organize and analyze data.

- **5.DA.1:** Collect and interpret data from observations, surveys, and experiments; represent data using frequency tables, scaled bar graphs, and scaled line graphs.
- 5.DA.2: Use a line plot to display a data set of measurements in fractions of a unit solving problems involving all four operations with fractions (excluding division of a fraction by fraction) using data presented in line plots.

**Return to the Table of Contents** 

### **GRADE 6 MATH STANDARDS**

### **Number Concepts & Computations**

### **Rational Numbers**

Students use fractions, decimals, integers, and absolute values to represent real-world situations.

- **6.NCC.1:** Explain positive and negative integers as being opposite values or directions and the meaning of 0 in a real-world context.
- **6.NCC.2:** Find and plot rational numbers on horizontal and vertical number lines in real-world and mathematical problems.
- **6.NCC.3:** Compare rational numbers, using inequalities  $(<,>,\leq,\geq,\neq)$  and order on a number line.
- **6.NCC.4:** Interpret the absolute value of numbers for positive or negative quantities in a real-world context.
- **6.NCC.5:** Convert between fractions, decimals, and percents in real-world and mathematical problems.

### **Rational Number Operations**

Students extend previous knowledge of operations to decimals and fractions, involving positive rational numbers.

- **6.NCC.6:** Interpret and represent quotients of fractions.
  - Fractions include all forms of fractions.
- **6.NCC.7:** Solve problems involving the division of fractions in real-world and mathematical problems.
  - Fractions include all forms of fractions.
- **6.NCC.8:** Divide multi-digit numbers fluently in real-world and mathematical problems.
- **6.NCC.9:** Use any standard algorithm to fluently add and subtract multi-digit decimals and fractions in real-world and mathematical problems.
- **6.NCC.10:** Use any standard algorithm to fluently multiply and divide multi-digit decimals and fractions in real-world and mathematical problems.

### **Common Factors and Multiples**

Students use factors and multiples to solve problems.

- **6.NCC.11:** Solve real-world and mathematical problems with the greatest common factor of two whole numbers less than or equal to 100.
- **6.NCC.12:** Solve real-world and mathematical problems with the least common multiple of two whole numbers less than
  - or equal to 12.

    C.13: Use the distributive property and the greatest common factor to rewrite the sum of two whole numbers, 1
- **6.NCC.13:** Use the distributive property and the greatest common factor to rewrite the sum of two whole numbers, 1 through 100.

### **Proportional Relationships**

### Ratio & Rates

Students understand ratio concepts and use proportional reasoning to solve problems.

- **6.PR.1:** Use precise ratio language and notation to describe a ratio as a relationship between two quantities.
- **6.PR.2:** Calculate unit rates to include unit pricing and constant speed.
- **6.PR.3:** Give examples of unit rates as a ratio that compares two quantities with different units of measure, limited to non-complex fractions.
- **6.PR.4:** Create various representations to compare ratios and find missing values to solve real-world and mathematical problems.
- **6.PR.5:** Find a percent of a quantity as a rate per 100 and solve problems involving finding the whole when given a part and the percent.

### Algebra

### **Expressions**

Students extend their understanding of arithmetic to algebraic expressions.

- **6.ALG.1**: Read and write expressions in real-world or mathematical problems in which letters stand for numbers.
- **6.ALG.2:** Use mathematical terms to identify parts of an expression, including the names of operations, terms, factors, coefficients, variables, and constants.
- **6.ALG.3:** Write and evaluate expressions for given values of variables, using order of operations, including expressions with whole number exponents.
- **6.ALG.4:** Generate equivalent expressions by applying the associative, commutative, distributive, and identity properties.
- **6.ALG.5:** Identify when two expressions are equivalent by using properties of operations including like terms.

### **Equations & Inequalities**

Students focus on reasoning about and solving equations and inequalities.

- **6.ALG.6:** Use substitution to determine if a given value in a specified set makes an equation or inequality true.
  - Include the following inequality symbols: <, >,  $\le$ ,  $\ge$ ,  $\ne$
- **6.ALG.7:** Write and solve one-step equations in real-world and mathematical problems, involving positive rational numbers and zero.
- **6.ALG.8:** Write, solve, and graph one-step inequalities in real-world and mathematical problems.

### Geometry & Measurement

### Area, Volume, & Surface Area

Students solve problems involving area, volume, and surface area.

- **6.GM.1:** Find the area of triangles, quadrilaterals, and polygons by composing or decomposing to solve real-world and mathematical problems.
- **6.GM.2:** Apply the formulas V = lwh and V = Bh to find the volume of right rectangular prisms with fractional edge lengths to solve real-world and mathematical problems, including solving for an unknown dimension.
- **6.GM.3:** Construct nets of a rectangular prism, rectangular pyramid, triangular prism, and triangular pyramid, using the nets to find the surface area of these prisms.

### Coordinate Plane System

Students graph points in all four quadrants.

- **6.GM.4:** Find and graph pairs of rational numbers in all four quadrants of the coordinate plane in real-world and mathematical problems.
- **6.GM.5:** Draw polygons in the coordinate plane when given coordinates for the vertices.
- **6.GM.6:** Use coordinates to calculate vertical and horizontal distances between points with the same x-coordinate or the same y-coordinate to solve real-world and mathematical problems.

### Conversions

Students apply measurement knowledge to solve real-world problems.

**6.GM.7:** Convert measurements within and between the metric and customary measurement systems to solve realworld and mathematical problems.

### Statistics & Probability

### Statistical & Nonstatistical

Students recognize that data collected to answer a statistical question can be analyzed by their distributions.

**6.SP.1:** Identify the difference between statistical and non-statistical questions and write simple statistical questions that allow variable responses.

### Measures of Center

Students explore mean, median, and mode.

- 6.SP.2: Calculate and interpret any measure of center (mean, median, and mode) of a numerical data set.
- **6.SP.3:** Determine which measure of center (mean or median) is more appropriate to describe the center of data and justify the choice.
- 6.SP.4: Describe how the mean or median is affected by outliers of a numerical data set.

### Measures of Variation

Students explore range and interquartile range.

- **6.SP.5:** Calculate and interpret the measure of variation [range and interquartile range (IQR)] of a numerical data set.
- **6.SP.6:** Determine which measure of variation (range or interquartile range) is more appropriate to describe the shape; justify the choice.

### **Numerical Data**

Students summarize and describe distributions.

- **6.SP.7:** Represent numerical data on a number line, histogram, and box plot.
- **6.SP.8**: Calculate the relative frequency of an interval of data values when given a histogram.
- **6.SP.9:** Interpret a box plot to answer statistical questions about a data set.

**Return to the Table of Contents** 

## Draft d

### **GRADE 7 MATH STANDARDS**

### Number Concepts & Computations

### **Rational Numbers**

Students model and compute with rational numbers.

- **7.NCC.1:** Represent addition and subtraction of rational numbers in real-world contexts using a variety of forms.
- **7.NCC.2**: Model and describe additive inverse in real-world situations to show opposite quantities combine to make 0.
- **7.NCC.3:** Demonstrate in real-world contexts the distance between two rational numbers on the number line as the
  - absolute value of their differences.
- **7.NCC.4:** Convert a rational number in fraction form to decimal form and recognize that the decimal form of a rational number terminates in 0s or eventually repeats.
- **7.NCC.5:** Interpret the products and quotients of rational numbers by describing real-world contexts.

### **Rational Number Operations**

Students apply all properties and operations to all rational numbers.

- **7.NCC.6:** Apply properties of operations as strategies to fluently add, subtract, multiply, and divide rational numbers.
- **7.NCC.7:** Use addition and subtraction with rational numbers in any form to solve multi-step problems in real-world and mathematical contexts.
- **7.NCC.8:** Use multiplication and division with rational numbers in any form to solve multi-step problems in real-world and mathematical contexts.
- 7.NCC.9: Apply operations with rational numbers involving the order of operations, involving nested grouping symbols.

### **Proportional Relationships**

### Ratio & Rates

Students analyze and use unit rates to solve problems.

- **7.PR.1:** Determine the unit rate (constant of proportionality) from tables, graphs, equations, diagrams, or verbal descriptions of proportional relationships.
- **7.PR.2:** Calculate unit rates in real-world contexts that include complex fractions.
- **7.PR.3:** Solve multi-step ratio and percent problems in a real-world context, including percent error and percent increase and decrease.

### **Constant of Proportionality**

Students analyze proportional relationships and solve multi-step ration and percent problems.

- **7.PR.4:** Determine whether two quantities represent proportional relationships by using equivalent ratios in a table and by graphing on a coordinate plane.
- **7.PR.5:** Compare two different proportional relationships represented in different forms.
- **7.PR.6:** Create equations in the form of y = mx from tables, verbal descriptions, or graphs.

**7.PR.7:** Given a graph with a proportional relationship, explain the meaning of a point (x, y) on the graph, including the origin (0,0) and the unit rate (1,r).

### Algebra

### **Expressions**

Students apply properties of operations to create equivalent expressions.

**7.ALG.1:** Generate and justify equivalent expressions, using properties of operations to add, subtract, factor, and expand linear expressions with rational coefficients within mathematical and real-world problems.

### **Equations & Inequalities**

Students apply previous knowledge of equations and inequalities to two-step problems.

- **7.ALG.2:** Model and solve fluently two-step equations in real-world or mathematical problems.
- **7.ALG.3:** Create, solve, and graph two-step inequalities in real-world and mathematical problems in the forms  $px \pm q > r$ ,  $px \pm q < r$ ,  $px \pm q \ge r$ , and  $px \pm q \le r$ .

### Relationships between Quantities

Students use understanding of algebraic expressions and equations to represent relationships between two quantities.

- 7.ALG.4: Write an equation to express two quantities in terms of the dependent and independent variables.
- **7.ALG.5:** Describe the relationship between the dependent and independent variables in an equation using tables and graphs, relating these to the equation.

### **Geometry & Measurement**

### Area, Volume, & Surface Area

Students solve problems involving area, volume, and surface area.

- **7.GM.1:** Describe the proportional relationship between the circumference and diameter of a circle.
- **7.GM.2:** Use area and circumference formulas of a circle to solve real-world and mathematical problems.
- **7.GM.3:** Apply the formulas for the volume and surface area of right rectangular prisms, rectangular pyramids, triangular prisms, and triangular pyramids to solve real-world and mathematical problems.

### **Cross Sections**

Students describe cross sections of three-dimensional figures.

- **7.GM.4:** Describe the two-dimensional figure that results from slicing a three-dimensional figure parallel and perpendicular to the base.
  - Three-dimensional figures include: right rectangular prisms, triangular prisms, and cylinders

### **Triangles & Angles**

Students solve problems using various angle properties of lines.

**7.GM.5:** Solve multi-step problems involving supplementary, complementary, vertical, and adjacent angles to include solving for an unknown angle in a figure.

### Scale

Students understand and use scale factor.

**7.GM.6:** Calculate the scale factor, compute the actual lengths from the scale in a drawing, and reproduce a scale drawing using another scale.

### Statistics & Probability

### Numerical Data

Students interpret and organize data.

- 7.SP.1: Interpret data displayed in a histogram and box plot to answer questions about the data.
- **7.SP.2:** Recognize, create, and interpret categorical data in a circle graph.
- **7.SP.3:** Graph two numerical data sets and compare their variability.
  - Variability includes: range, interquartile range, or mean absolute deviation
- **7.SP.4:** Select an appropriate measure(s) of center or variability and draw valid comparative inferences for two data sets.

### Sampling & Population

Students understand sampling and use samples to make inferences.

- **7.SP.5:** Distinguish between a random and non-random sample.
- **7.SP.6:** Use a random sampling of a population to draw valid inferences and generalizations of populations.

### **Probability**

Students understand theoretical and experimental probability for simple experiments.

- **7.SP.7:** Determine the sample space of a simple experiment and use the sample space to determine the theoretical probability of a given set of outcomes.
  - Simple experiments include: tossing a fair coin, spinning a fair spinner, rolling a fair dice, picking a random marble from a bag, and selecting a random card from a deck
- **7.SP.8:** Recognize that probabilities in a simple experiment can be qualitative descriptors of likelihood: impossible (0), unlikely, neither likely nor unlikely, likely, or certain (1).
- **7.SP.9:** Determine experimental probabilities in simple experiments and represent as fractions, decimals, and percents.
- **7.SP.10:** Use theoretical probability of an event in a simple experiment to predict the number of times that an event will occur for a large number of experiments.

**Return to the Table of Contents** 

# Draft

### **GRADE 8 MATH STANDARDS**

### **Number Concepts & Computations**

### Rational & Irrational Numbers

Students understand relationships among numbers and the real number system.

- **8.NCC.1**: Describe relationships in the real number system (rational and irrational).
  - Numbers relationships to include: decimal expansion for rational and irrational numbers, square roots of nonperfect squares, and cube roots of nonperfect cubes
- **8.NCC.2:** Compare the size of irrational numbers and locate them on a number line by finding the rational approximations.
- **8.NCC.3:** Know and apply the properties of integer exponents to generate equivalent numerical expressions.
- **8.NCC.4:** Write very large and very small numbers in scientific notation using positive and negative exponents.
- **8.NCC.5:** Compare numbers written in scientific notation to determine how many times larger or smaller one number is than the other, using real-world and mathematical problems.
- **8.NCC.6:** Solve real-world and mathematical problems by performing operations with numbers written in standard and scientific notation.

### **Rational Number Operations**

Students work with square and cube roots.

- **8.NCC.7:** Solve equations in the form of  $x^2 = p$  or  $x^3 = p$  where p is a positive rational number.
- **8.NCC.8:** Evaluate square roots of perfect squares and cube roots of perfect cubes.

### **Functions**

### Proportional & Linear Relationships

Students understand slope using previous learning of proportional relationships.

- **8.FN.1:** Graph proportional relationships, interpreting the unit rate as the slope of the graph.
- **8.FN.2:** Explain, using similar right triangles, how the slope of a line is the same between two points on a non-vertical line or non-horizontal line.
  - Slope includes: positive, negative, horizontal (zero), and vertical (undefined)

### **Functions**

Students understand that a function is a rule that assigns each input exactly one output.

- **8.FN.3:** Determine whether a relation is a function or not when given a function map, table, graph, equation, or set of ordered pairs.
- **8.FN.4:** Compare the rate of change (slope) and y-intercept (initial value) of two linear functions each represented in different forms.
  - Functions are represented algebraically, graphically, numerically in tables, or by verbal descriptions.
- **8.FN.5**: Distinguish between linear and nonlinear functions by comparing graphs and equations.

- 8.FN.6: Determine the rate of change (slope) and y-intercept (initial value) from tables, graphs, equations, and verbal descriptions of linear relationships.
- **8.FN.7:** Interpret and explain the meaning of the rate of change (slope) and y-intercept (initial value) of a linear relationship in a real-world context.
- 8.FN.8: Analyze a graph by describing the functional relationships between two quantities.8.FN.9: Sketch a graph that exhibits qualitative features of a function described verbally.

### Algebra

### **Equations & Inequalities**

Students solve linear equations and inequalities.

- **8.ALG.1:** Analyze and solve one-variable linear equations with rational coefficients containing solutions with one, zero, or infinitely many solutions.
- **8.ALG.2:** Analyze and solve one-variable linear inequalities with rational coefficients.

### **Systems of Equations**

Students will solve systems of equations.

**8.ALG.3:** Analyze and solve systems of linear equations in the form y = mx + b in real-world or mathematical contexts, graphically and algebraically.

### Geometry & Measurement

### Area, Volume, & Surface Area

Students solve problems involving area, volume, and surface area.

**8.GM.1:** Apply the formulas for the volume and surface area of cylinders, cones, and spheres to solve real-world and mathematical problems.

### **Cross Sections**

Students describe cross sections of three-dimensional figures.

- **8.GM.2:** Describe the two-dimensional figure that results from slicing a three-dimensional figure parallel and perpendicular to the base.
  - Three-dimensional figures include: pyramids, cones, and spheres

### Pythagorean Theorem

Students explore right triangles and apply the Pythagorean Theorem.

- **8.GM.3:** Model or explain an informal proof of the Pythagorean Theorem and its converse.
- **8.GM.4**: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles.
- **8.GM.5:** Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

### Transformations & Congruence on a Coordinate Plane

Students use concrete models, diagrams, or geometry to understand congruence and similarity.

- **8.GM.6:** Given a figure, draw a congruent figure on a coordinate plane resulting from a rotation, reflection, or translation.
- **8.GM.7:** Identify a single transformation used to transform one figure onto another on a coordinate plane.
  - Rotations include: 90°, 180°, and 270°
- **8.GM.8:** Given two congruent figures, describe a sequence of transformations that maps one figure to another.
- **8.GM.9:** Perform a given sequence of transformations of a figure on the coordinate plane, including rotations, reflections, translations, and dilations.
  - Rotations include: 90°, 180°, and 270°
- **8.GM.10:** Describe the effects of rotations, reflections, translations, and dilations on two-dimensional figures using coordinates.
  - Rotations include: 90°, 180°, and 270°
- **8.GM.11:** Given two similar two-dimensional figures, describe a sequence of transformations that exhibits similarity, including rotations, reflections, translations, and dilations.

### Statistics & Probability

### **Bivariate Data**

Students investigate patterns of association to bivariate data.

- **8.SP.1:** Construct scatter plots using bivariate data; determine if the data displays a linear or nonlinear pattern and positive, negative, or no association.
- **8.SP.2:** Construct straight lines to approximately fit data displaying a linear association when presented in scatter plots.
- **8.Sp.3:** Construct and interpret a relative frequency table, using data from two categorical variables collected from the same subject.

### **Probability**

Students understand theoretical and experimental probability for compound experiments using organized lists, tables, or tree diagrams.

- **8.SP.4:** Determine the sample space and use the sample space to determine the theoretical probability of a given set of outcomes for compound experiments, using organized lists, tables, or tree diagrams.
  - Compound experiments include a combination of two different experiments.
- **8.SP.5:** Determine theoretical and experimental probabilities of compound experiments.
- **8.SP.6:** Use theoretical probability of an event in a compound experiment to predict the number of times that event will occur for a large number of experiments.

**Return to the Table of Contents** 

### ALGEBRA I MATH STANDARDS

### **Expressions**

### Polynomials, Roots, & Exponent Laws

Students simplify algebraic and numerical expressions.

- **A1.EX.1:** Add, subtract, and multiply polynomials; compare the system of polynomials to the system of integers when performing operations.
- **A1.EX.2:** Simplify and perform operations with radical expressions without variables; rationalizing denominators should not include conjugates.
- **A1.EX.3:** Simplify algebraic expressions using the laws of exponents.
- A1.EX.4: Interpret the parts of expressions such as terms, factors, and coefficients in terms of a real-world context.

### **Functions**

### Domain & Range, Function Notation

Students understand the concept of a function, domain and range, and use function notation; students use function notation to solve problems.

- A1.FN.1: Explain that a function assigns each element in the domain to exactly one element in the range.
- A1.FN.2: Use function notation to represent functions, understanding that if f is a function and x is an element of its domain, then f(x) represents the output of f corresponding to the input x.
- A1.FN.3: Graph functions given in function notation, understanding that the graph contains the points (x, f(x)).
- A1.FN.4: Evaluate functions expressed in function notation for one or more elements in their domains (inputs); use function notation to describe a contextual situation.

### Construct & Compare

Students construct and compare linear, quadratic, and exponential models and solve problems.

- **A1.FN.5:** Differentiate between real-world scenarios that can be modeled by exponential or linear functions by determining whether the relationship has a common difference or a common ratio.
- **A1.FN.6:** Compare the growth pattern of exponential to linear or quadratic functions using graphs and tables and recognize how exponential growth exceeds other functions.

### Linear Functions, Equations, & Inequalities

### Create & Solve

Students create and solve equations that model linear relationships.

- **A1.LFE.1:** Represent and solve real-world problems, using linear expressions, equations, and inequalities in one variable.
- A1.LFE.2: Construct linear functions from arithmetic sequences with and without context.
- **A1.LFE.3:** Solve linear formulas for a specified variable.

**A1.LFE.4:** Solve linear equations, linear inequalities, and absolute value equations in one variable, including those with rational number coefficients, and variables on both sides of the equal or inequality sign; solve them fluently, explaining the process used.

### **Interpret Key Features**

Students interpret key features of equations that model linear relationships.

- A1.LFE.5: Determine the domain and range of linear functions in mathematical problems.
- **A1.LFE.6:** Determine reasonable domain and range values of linear functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.
- **A1.LFE.7:** Interpret the key features of a linear and absolute value functions that models a relationship between two quantities in a given context.
- A1.LFE.8: Flexibly use different representations of a linear function, including graphs, tables, and equations.
- **A1.LFE.9:** Calculate and interpret the rate of change of a linear function represented in a table, graph, or as an equation in context of real-world and mathematical problems.
- **A1.LFE.10:** Translate among equivalent forms of equations for linear functions, including standard, point-slope, and slope-intercept forms; recognize that each form reveals key features in a given context.

### Systems of Equations & Inequalities

Students solve systems of equations and inequalities.

- A1.LFE.11: Solve systems of linear equations by substitution, elimination, and graphing with and without a real-world context; understand that the solutions will be the same regardless of the method for solving.
- **A1.LFE.12:** Solve a system of equations consisting of a linear equation and a quadratic equation in two variables graphically with the assistance of technology.
- **A1.LFE.13:** Explain why a solution to the equation f(x) = g(x) is the x-coordinate where the y-coordinate of f(x) and g(x) are the same using graphs, tables, or approximations. Include cases where f(x) and/or g(x) are linear, quadratic, absolute value, and exponential.
- A1.LFE.14: Solve linear inequalities and systems of linear inequalities in two variables by graphing.

### **Graphing & Transformations**

Students graph linear functions, equations, and inequalities.

- **A1.LFE.15:** Write linear equations that model the relationship between two quantities and produce a graph of the equation.
- A1.LFE.16: Graph linear functions expressed as an equation and show intercepts of the graph without technology.
- **A1.LFE.17:** Graph absolute value functions expressed as an equation with and without technology, showing intercepts and end behavior.
- A1.LFE.18: Graph and generalize the effect of transformations on linear and absolute value functions.
  - Transformations include: stretches, compressions, vertical, and horizontal
- **A1.LFE.19:** Given the graph of a linear function, explain the effects of the transformation from the parent function, y = x.

### Statistical Relationships

Students explore linear statistical relationships.

A1.LFE.20: Write linear functions that provide a reasonable fit to data and use them to make predictions, with and

- without technology; interpret the slope and y-intercept in context.
- **A1.LFE.21:** Calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association.
- A1.LFE.22: Compare and contrast correlation and causation in real-world problems.

### **Quadratic Functions & Equations**

### Create & Solve

Students create and solve equations that model quadratic relationships.

- A1.QFE.1: Represent and solve real-world problems using quadratic expressions and equations in one variable.
- **A1.QFE.2:** Write quadratic equations with real number solutions that model the relationship between two quantities and produce a graph of the equation.
- **A1.QFE.3:** Solve quadratic equations with real number solutions, containing one variable, including those with variables on both sides of the equal sign. Equations should be solved by:
  - Graphing
  - Factoring (including perfect square trinomials and difference of squares binomials),
  - Using the quadratic formula,
  - Completing the square, or
  - Taking the square root.

### Interpret Key Features

Students interpret key features of equations that model quadratic relationships.

- A1.QFE.4: Determine the domain and range of quadratic functions in mathematical problems.
- A1.QFE.5: Determine reasonable domain and range values of quadratic functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.
- A1.QFE.6: Interpret the key features of a quadratic function that models a relationship between two quantities in a given context.
- A1.QFE.7: Flexibly use different representations of a quadratic function, including graphs, tables, and equations.
- **A1.QFE.8:** Explain how each form of a quadratic expression (standard, factored, and vertex form) identifies different key attributes, using the different forms to interpret quantities in context.
- **A1.QFE.9:** Use factoring and completing the square to create equivalent forms of quadratic functions to reveal key attributes.

### **Graphing & Transformations**

Students graph quadratic functions and explore different transformations of  $f(x) = x^2$ .

- **A1.QFE.10:** Graph quadratic functions given as an equation or in function notation, labeling key attributes, without technology.
- A1.QFE.11: Graph and describe the effect of transformations on quadratic functions.
  - Transformations include: stretches, compressions, vertical, and horizontal
- **A1.QFE.12:** Given the graph of a quadratic function, explain the effects of the transformation from the parent function,  $y = x^2$ .

### Statistical Relationships

Students explore quadratic statistical relationships.

**A1.QFE.13:** Write quadratic functions that provide a reasonable fit to data and use them to make predictions with technology.

### **Exponential Functions & Equations**

### Create & Solve

Students create and solve problems that model exponential relationships.

- **A1.EFE.1:** Represent and solve real-world problems, using exponential equations in one variable.
- A1.EFE.2: Represent real-world problems (growth, decay, and compound interest), using exponential equations.
- A1.EFE.3: Construct exponential equations from geometric sequences with and without context.

### **Interpret Key Features**

Students interpret key features of equations that model exponential relationships.

- A1.EFE.4: Determine the domain and range of exponential functions in mathematical problems.
- A1.EFE.5: Determine reasonable domain and range values of exponential functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.
- A1.EFE.6: Interpret the key features of an exponential function that models a relationship between two quantities in a
  - given context.
- A1.EFE.7: Flexibly use different representations of an exponential function, including graphs, tables, and equations.
- A1.EFE.8: Interpret the quantities in an exponential equation in the context of a real-world problem, including growth,
  - decay, and compound interest.

### Graphing

Students graph exponential functions.

**A1.EFE.9:** Graph exponential functions that model real-world problems (growth, decay, and compound interest), showing key attributes.

### Statistical Relationships

Students explore exponential statistical relationships.

**A1.EFE.10:** Write exponential functions that provide a reasonable fit to data and use them to make predictions with technology.

### Statistics & Probability

### Numerical Data

Students summarize and describe distributions.

- **A1.SP.1:** Use box plots and histograms to determine the statistics appropriate to the shape of the data distribution; compare the center and spread of two or more data sets.
- **A1.SP.2:** Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points.

### **Bivariate Data**

Students will investigate patterns of association in bivariate data.

**A1.SP.3:** Summarize data from two categorical variables in a frequency table; interpret relative frequencies in the context of the data, recognizing data trends and associations.

### **Return to the Table of Contents**

## Draft d

### **GEOMETRY MATH STANDARDS**

### **Right Triangles**

### Special Right Triangles & Pythagorean Theorem

Students explore right triangles and apply the Pythagorean Theorem.

- **G.RT.1:** Apply the properties of special right triangles (30°-60°-90° and 45°-45°-90°) to solve real-world and mathematical problems.
- **G.RT.2:** Prove and apply the Pythagorean Theorem and its converse.

### **Trigonometry Ratios**

Students apply trigonometric ratios to solve problems.

- **G.RT.3:** Explain how the definitions for trigonometric ratios are developed by similarity and how the side ratios in right triangles are properties of the angles in the triangle.
- **G.RT.4:** Explain the relationship between the sine and cosine of complementary angles and use them to solve problems.
- **G.RT.5**: Determine the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles.
- G.RT.6: Use trigonometric ratios (sine, cosine, and tangent) to calculate missing side lengths and angle measures in a right triangle, including applications of angles of elevation and depression; include real-world and mathematical problems.

### Circles

### Circle Relationships

Students explore and use circle relationships to solve problems.

- **G.CIR.1:** Apply the precise definition and standard geometric notation for a circle to understand geometric relationships.
- G.CIR.2: Recognize and apply relationships between angles, radii, and chords, tangents, and secants including:
  - The relationship between central, inscribed, and circumscribed angles,
  - Inscribed angles on a diameter are right angles,
  - The radius of a circle is perpendicular to the tangent where the radius intersects the circle, and
  - The relationship of angles and segments formed by chords, secants and/or tangents to a circle.
- **G.CIR.3:** Use the proportional relationship between the measure of an arc length of a circle and the circumference of the circle to solve problems.
- **G.CIR.4:** Use the proportional relationship between the measure of the area of a sector of a circle and the area of the circle to solve problems.
- **G.CIR.5:** Explain why the formulas for the area and circumference of a circle work using dissection and informal limit arguments.

### **Equation of a Circle**

Students solve problems involving the equation of a circle.

- **G.CIR.6:** Write the equation of a circle, given the radius and center, where the center is at the origin or another point.
- G.CIR.7: Identify the center and radius of a circle, given the equation of a circle, where the center is at the origin or
  - another point.
- **G.CIR.8:** Apply the equation of a circle to solve real-world problems.

### **Geometric Figures**

### Three-Dimensional

Students explore and solve problems involving three-dimensional figures.

- **G.GF.1:** Find the volume and surface area of complex three-dimensional figures composed of prisms, pyramids, cones, cylinders, and spheres.
- **G.GF.2**: Use three-dimensional geometric figures and their measures to model real-world objects and solve problems.
- **G.GF.3:** Explain why the formulas for the volume and surface area of a cylinder, pyramid, and cone work.
- G.GF.4: Apply the Pythagorean Theorem to determine missing measurements in a three-dimensional figure.
- G.GF.5: Identify the three-dimensional figure generated by rotating a two-dimensional figure.

### Two-Dimensional

Students explore and solve problems involving two-dimensional figures.

- G.GF.6: Apply theorems about quadrilaterals, including those involving angles, diagonals, and sides to solve problems.
- **G.GF.7:** Prove that a given quadrilateral is a parallelogram, rhombus, rectangle, square, kite, or trapezoid, and apply these relationships to solve problems.
- **G.GF.8**: Prove and apply theorems about triangles including:
  - Angle-Sum Theorem,
  - Exterior Angle Theorem,
  - Isosceles Triangle Theorem and its converse,
  - Midsegment Theorem,
  - Proportionality Theorem,
  - Inequality Theorem and its converse, and
  - · Geometric Mean Theorem.
- **G.GF.9:** Calculate the perimeter of polygons when given the vertices, including using the distance formula.
- **G.GF.10:** Calculate the area of triangles and rectangles when given the vertices, including using the distance formula and decomposing figures.
- **G.GF.11:** Describe reflectional and rotational symmetry as they apply to a rectangle, parallelogram, trapezoid, or regular polygon.

### **Geometric Probability**

Students determine probability in geometric contexts.

**G.GF.12**: Calculate probabilities as a proportion of area in a geometric context.

### **Lines & Angles**

### **Define & Construct**

Students use precise definitions and various construction tools to create geometric figures.

- **G.LA.1:** Use precise definitions and standard geometric notation for angles, perpendicular lines, parallel lines, and line segments based on the undefined notions of point, line, and distance along a line.
- **G.LA.2:** Make formal geometric constructions with a variety of tools and methods including:
  - Congruent segments and angles,
  - Segment and angle bisectors,
  - Perpendicular lines and perpendicular bisectors of a line segment,
  - Parallel lines, and
  - An equilateral triangle, a square, and a regular hexagon inscribed in a circle.

### Coordinate Geometry

Students reason about geometric figures using the coordinate plane.

- G.LA.3: Determine the point that cuts a line segment into a specified ratio on a number line and a coordinate plane, including finding the midpoint.
- G.LA.4: Derive the distance and midpoint formulas and use the formulas, including the slope formula, to verify geometric relationships on a coordinate plane.

### Parallel & Perpendicular Lines

Students solve problems involving parallel and perpendicular lines.

- G.LA.5: Prove and apply slope criteria of parallel and perpendicular lines to solve problems.
- G.LA.6: Write an equation of a line that is parallel or perpendicular to a given line and passing through a given point.
- **G.LA.7**: Prove and apply theorems about lines and angles including:
  - Vertical angles,
  - Angles formed by parallel lines cut by a transversal, and
  - Points on a perpendicular bisector.

### **Transformations**

### Coordinate Plane

Students transform figures on the coordinate plane.

- **G.TRF.1:** Describe rotations, reflections, and translations as functions that take points in the coordinate plane as inputs and give other points as outputs; write in prime notation.
- **G.TRF.2:** Compare transformations that preserve distance and angle (rotations, reflections, and translations) to those that do not (dilations) to develop definitions for congruence and similarity.

### Plane

Students transform figures and make geometric constructions.

- **G.TRF.3:** Apply understanding of angles, circles, perpendicular lines, parallel lines, and line segments to develop definitions for rotations, reflections, and translations.
- **G.TRF.4:** Use geometric constructions to represent rotations, reflections, translations, and dilations in the plane with a variety of tools and methods.
- **G.TRF.5**: Given two congruent figures, identify the sequence of transformations that maps one figure to another.

### Similarities & Congruence

### **Similarity**

Students use similarity criteria to solve problems.

- **G.SC.1:** Given two figures, apply the definition of similarity in terms of a dilation to identify similar figures, proportional sides, and corresponding congruent angles.
- G.SC.2: Develop and apply the criteria of similarity for triangles (AA~, SAS~, and SSS~) to solve problems and prove geometric relationships.
- **G.SC.3**: Use transformations to prove all circles are similar.

### Triangle Congruence

Students apply congruence criteria to solve problems.

- **G.SC.4:** Explain, using rigid motion transformations, why two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
- G.SC.5: Develop and apply the criteria for triangle congruence (ASA, SAS, AAS, SSS, and HL) to solve problems and prove geometric relationships.

**Return to the Table of Contents**