# Principles and Proportional Reasoning in Algebra 7th grade Standards 

## Proficiency Scale <br> Topic 1: Integers and Rational Numbers

## Priority Cluster/State Standard:

7.NS.A: Apply and extend previous understanding of operations with fractions to add, subtract, multiply, and divide rational numbers except division by zero.

- 7.NS.A.1: Add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. (includes 7.NS.A.1a-d, see details below)
- 7.NS.A.2: Multiply and divide integers and other rational numbers. (includes 7.NS.A.2a-d, see details below)

| Standard | No Evidence of Proficiency 0 | Minimally Proficient 1 | Partially <br> Proficient 2 | $\begin{gathered} \text { Proficient } \\ 3 \end{gathered}$ | Highly Proficient $4$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.NS.A.1a |  | Identify opposite quantities | Identify situations in which opposite quantities combine to make 0 | Describe situations in which opposite quantities combine to make 0. | Interpret situations in which opposite quantities combine to make $0 .$. |
| 7.NS.A.1b |  | Identify a number and its opposite that have a sum of 0 . | Recognize $p+q$ <br> as the number located a distance $\|q\|$ from $p$, in the positive or negative direction depending on whether q is positive or negative. Identify a number and its opposite that have a sum of 0 (are additive inverses). | Understand $\mathrm{p}+\mathrm{q}$ as the number located a distance $\|q\|$ from $p$, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing realworld context. | Explain $\mathrm{p}+\mathrm{q}$ as the number located a distance $\|q\|$ from $p$, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing realworld context. <br> Apply this information to solve problems. |
| 7.NS.A.1c |  | Identify the distance between two rational numbers on the number line as the absolute value of | Recognize subtraction of rational numbers as adding the additive inverse, p $-q=p+(-q)$. | Understand subtraction of rational numbers as adding the additive inverse, $p$ $-q=p+(-q)$. | Explain subtraction of rational numbers as adding the additive inverse, p $-q=p+(-q) .$ |

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & \text { their difference. }\end{array} \begin{array}{l}\text { Show that the } \\ \text { distance between } \\ \text { two rational } \\ \text { numbers on the } \\ \text { number line is the } \\ \text { absolute value of } \\ \text { their difference. }\end{array} \quad \begin{array}{l}\text { Show that the } \\ \text { distance between } \\ \text { two rational } \\ \text { numbers on the } \\ \text { number line is the } \\ \text { absolute value of } \\ \text { their difference, } \\ \text { and apply this } \\ \text { principle in real- } \\ \text { world context. }\end{array} \quad \begin{array}{l}\text { Show that the } \\ \text { distance between } \\ \text { two rational } \\ \text { numbers on the } \\ \text { number line is the } \\ \text { absolute value of } \\ \text { their difference, } \\ \text { and apply this } \\ \text { principle in real- } \\ \text { world context. }\end{array}\right]$

|  | integers, then -(p <br> $/ q)=(-p) / q=p$ <br> $/(-q)$. | integers, then $-(p$ <br> $/ q)=(-p) / q=p$ <br> $/(-q)$. Identify <br> quotients of rational numbers by describing realworld context. | integers, then $-(\mathrm{p}$ <br> $/ q)=(-p) / q=p$ <br> $/(-q)$. Apply <br> quotients of rational numbers by describing realworld context. | integers, then -(p <br> $/ q)=(-p) / q=p$ <br> $/(-q)$. C Interpret <br> quotients of rational numbers by describing realworld context. |
| :---: | :---: | :---: | :---: | :---: |
| 7.NS.A.2c | Use properties of operations as strategies to multiply and divide rational numbers. | Apply properties of operations as strategies to multiply and divide rational numbers. | Apply properties of operations as strategies to multiply and divide rational numbers in a real world context. | Multiply and divide rational numbers |
| 7.NS.A.2d | Identify decimal form of a rational number | Convert a rational number to decimal form using long division; know that the decimal form of a rational number terminates in 0 's or eventually repeats. | Understand how to convert a rational number to decimal form using long division; know that the decimal form of a rational number terminates in 0 's or eventually repeats. | Explain how to convert a rational number to decimal form using long division; explain that the decimal form of a rational number terminates in 0 's or eventually repeats. |

# Proficiency Scale <br> Topic 2: Analyze and Use Proportional Relationships 

## Priority Cluster/State Standard:

7.RP.A.: Analyze proportional relationships and use them to solve mathematical problems and problems in real-world context.

- 7.RP.A.1: Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units.
- 7.RP.A.2: Recognize and represent proportional relationships between quantities. (includes 7.RP.A.2a-d, see details below)
- 7.RP.A.3: Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).

| Standard | No Evidence of Proficiency 0 | Minimally Proficient 1 | Partially Proficient 2 | $\begin{gathered} \text { Proficient } \\ 3 \end{gathered}$ | Highly Proficient 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.RP.A. 1 |  | Identify unit rates associated with ratios involving simple fractions, including ratios of quantities measured in like units. | Compute unit rates associated with ratios involving simple fractions, including ratios of quantities measured in like units. | Compute unit rates with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units. | Interpret unit <br> rates associated <br> with ratios <br> involving both <br> simple and <br> complex <br> fractions, <br> including ratios of <br> quantities <br> measured in like <br> or different units. |
| 7.RP.A.2a |  | Identify two quantities in a proportional relationship | Decide whether two quantities are in a proportional relationship. | Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). | Explain whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). |
| 7.RP.A.2b |  | Identify the constant of proportionality (unit rate) in tables, graphs OR equations. | Identify the constant of proportionality (unit rate) in tables, graphs, AND equations. | Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and describe | Interpret the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and explain proportional |


|  |  |  | proportional relationships. | relationships. |
| :---: | :---: | :---: | :---: | :---: |
| 7.RP.A.2c | Identify equations to represent proportional relationships. | Represent proportional relationships by equations. | Represent proportional relationships by equations. For example, if total cost $t$ is proportional to the number $n$ of items purchased at a constant price p , the relationship between the total cost and the number of items can be expressed as $\mathrm{t}=\mathrm{pn}$. | Represent and explain <br> proportional relationships by equations. For example, if total cost t is proportional to the number $n$ of items purchased at a constant price p , the relationship between the total cost and the number of items can be expressed as $\mathrm{t}=\mathrm{pn}$. |
| 7.RP.A.2d | Identify a point ( $\mathrm{x}, \mathrm{y}$ ) on the graph of a proportional relationship | Identify what a point ( $\mathrm{x}, \mathrm{y}$ ) on the graph of a proportional relationship means in terms of the situation, with special attention to the points ( 0 , 0 ) and ( $1, r$ ) where $r$ is the unit rate. | Explain what a point ( $\mathrm{x}, \mathrm{y}$ ) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where $r$ is the unit rate. | Explain what a point ( $\mathrm{x}, \mathrm{y}$ ) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where $r$ is the unit rate, and apply this information to solve problems. |
| 7.RP.A. 3 | Identify proportional relationships to solve one-step ratio and percent mathematical problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error). | Use proportional relationships to solve_one-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error). | Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error). | Interpret <br> proportional relationships when solving multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error). |

## Proficiency Scale <br> Topic 3: Analyze and Solve Percent Problems

## Priority Cluster/State Standard:

7.RP.A.: Analyze proportional relationships and use them to solve mathematical problems and problems in real-world context.

- 7.RP.A.2: Recognize and represent proportional relationships between quantities.
- c. Represent proportional relationships by equations. For example, if total cost tis proportional to the number $n$ of items purchased at a constant price $p$, the relationship between the total cost and the number of items can be expressed as $t=p n$.
- 7.RP.A.3: Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).

| Standard | No Evidence of Proficiency 0 | Minimally Proficient 1 | Partially Proficient 2 | $\begin{gathered} \text { Proficient } \\ \quad 3 \end{gathered}$ | Highly Proficient 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.RP.A.2c |  | Identify equations to represent proportional relationships. | Represent proportional relationships by equations. | Represent and solve proportional relationships by equations. | Apply proportional relationships by equations. |
| 7.RP.A. 3 |  | Use proportional relationships to solve one-step ratio problems. | Use proportional relationships to solve one-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error). | Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error). | Interpret <br> proportional relationships when solving multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error). |

## Proficiency Scale <br> Topic 4: Generate Equivalent Expressions

## Priority Cluster/State Standard:

7.EE.A: Use properties of operations to generate equivalent expressions.

- 7.EE.A.1: Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- 7.EE.A.2: Rewrite an expression in different forms, and understand the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 a=1.05 a$ means that "increase by $5 \%$ " is the same as "multiply by 1.05."
7.EE.B: Solve mathematical problems and problems in real-world context using numerical and algebraic expressions and equations.
- 7.EE.B.3: Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers.
- 7.EE.B.4: Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems.
- a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $p, q$, and $r$ are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

| Standard | No Evidence of Proficiency 0 | Minimally Proficient 1 | Partially Proficient 2 | Proficient 3 | Highly Proficient 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.EE.A. 1 |  | Identify properties of operations used to add, subtract, factor, and expand linear expressions with integer coefficients. | Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with integer coefficients. | Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. | Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients and interpret the meaning in a realworld context. |
| 7.EE.A. 2 |  | Identify an expression in different forms. | Identify an expression in different forms, and understand the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 \mathrm{a}$ $=1.05 \mathrm{a}$ means that "increase by $5 \%$ " is the same as "multiply by 1.05." | Rewrite an expression in different forms, and understand the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 \mathrm{a}$ $=1.05 \mathrm{a}$ means that "increase by $5 \%$ " is the same as "multiply by 1.05." | Rewrite an expression in different forms, and explain the relationship between the different forms and their meanings in a problem context. For example, $a+0.05 a$ $=1.05 \mathrm{a}$ means that "increase by $5 \%$ " is the same as "multiply by 1.05." |


| 7.EE.B. 3 |  | Solve multi-step mathematical problems and problems in realworld context posed with positive and negative rational numbers in one form. | Solve multi-step mathematical problems and problems in realworld context posed with positive and negative rational numbers in any form. Convert between forms as appropriate. | Solve multi-step mathematical problems and problems in realworld context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers. | Create problems with a real-world context given multi-step equations with positive and negative rational numbers. Convert between forms as appropriate and interpret the reasonableness of answers. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.EE.B.4a |  | Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $\mathrm{p}, \mathrm{q}$, and r are integers. | Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $\mathrm{p}, \mathrm{q}$, and r are integers. Solve equations of these forms fluently. | Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $\mathrm{p}, \mathrm{q}$, and r are specific rational numbers. Solve equations of these forms fluently. <br> Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. | Solve real-world problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $\mathrm{p}, \mathrm{q}$, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, explaining the sequence of the operations used in each approach. |

# Proficiency Scale <br> Topic 5: Solve Problems Using Equations and Inequalities 

## Priority Cluster/State Standard:

7.EE.B: Solve mathematical problems and problems in real-world context using numerical and algebraic expressions and equations.

- 7.EE.B.3: Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers. For example, If a woman making $\$ 25$ an hour gets a $10 \%$ raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$ per hour.
- 7.EE.B.4: Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems.
- a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $p, q$, and $r$ are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.
- b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where $p, q$, and $r$ are rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

| Standard | No Evidence of Proficiency 0 | Minimally Proficient 1 | Partially Proficient 2 | $\begin{gathered} \text { Proficient } \\ 3 \end{gathered}$ | Highly Proficient 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.EE.B. 3 |  | Solve multi-step mathematical problems and problems in realworld context posed with positive and negative rational numbers in one form. | Solve multi-step mathematical problems and problems in realworld context posed with positive and negative rational numbers in any form. Convert between forms as appropriate. | Solve multi-step mathematical problems and problems in real world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers. | Create problems with a real-world context given multi-step equations with positive and negative rational numbers. Convert between forms as appropriate and interpret the reasonableness of answers. |
| 7.EE.B.4a |  | Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $\mathrm{p}, \mathrm{q}$, and r are integers. | Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $\mathrm{p}, \mathrm{q}$, and r are integers. <br> Solve equations of these forms fluently. <br> Compare an algebraic solution to an arithmetic solution, identifying the | Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $\mathrm{p}, \mathrm{q}$, and r are specific rational numbers. Solve equations of these forms fluently. <br> Compare an algebraic solution to an arithmetic solution, | Solve real-world problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where $\mathrm{p}, \mathrm{q}$, and r are specific rational numbers. Solve equations of these forms fluently. <br> Compare an algebraic solution to an arithmetic solution, |


|  |  | sequence of the operations used in each approach. | identifying the sequence of the operations used in each approach. | explaining the sequence of the operations used in each approach. |
| :---: | :---: | :---: | :---: | :---: |
| 7.EE.B.4b | Solve word <br> problems leading to inequalities of the form $\mathrm{px}+\mathrm{q}>$ $r$ or $p x+q<r$, where $\mathrm{p}, \mathrm{q}$, and r are integers. | Solve word problems leading to inequalities of the form $\mathrm{px}+\mathrm{q}>$ $r$ or $p x+q<r$, where $\mathrm{p}, \mathrm{q}$, and r are rational numbers. Graph the solution set of the inequality. | Solve word problems leading to inequalities of the form $\mathrm{px}+\mathrm{q}>$ $r$ or $p x+q<r$, where $\mathrm{p}, \mathrm{q}$, and r are rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. | Solve real-world problems leading to inequalities of the form $\mathrm{px}+\mathrm{q}>$ r or $\mathrm{px}+\mathrm{q}<\mathrm{r}$, where $\mathrm{p}, \mathrm{q}$, and r are rational numbers. Graph the solution set of the inequality and explain it in the context of the problem. |

## Proficiency Scale <br> Topic 8: Solve Problems Involving Geometry

## Priority Cluster/State Standard:

7.G.B: Solve mathematical problems and problems in real-world context involving angle measure, area, surface area, and volume.

- 7.G.B.4: Understand and use the formulas for the area and circumference of a circle to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

| Standard | No Evidence of <br> Proficiency <br> 0 | Minimally <br> Proficient <br> $\mathbf{1}$ | Partially <br> Proficient <br> $\mathbf{2}$ | Proficient <br> $\mathbf{3}$ | Highly Proficient <br> $\mathbf{4}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 7.G.B.4 | Identify the area <br> and circumference <br> of a circle to solve <br> problems. | Understand and <br> use the formulas <br> for the area and <br> circumference of a <br> circle to solve <br> problems | Understand and <br> use the formulas <br> for the area and <br> circumference of a <br> circle to solve <br> problems; and <br> explain the <br> relationship <br> between the <br> circumference and <br> area of a circle. | Understand and <br> use the formulas <br> for the area and <br> circumference of a <br> circle to solve <br> problems and <br> interpret the <br> solution; apply <br> the relationship <br> between the <br> circumference and <br> area of a circle to <br> solve problems. |  |

## Proficiency Scale <br> Topic 6: Use Sampling to Draw Inferences About Populations

## Priority Cluster/State Standard:

7.SP.B: Draw informal comparative inferences about two populations.

- 7.SP.B.3: Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.
- 7.SP.B.4: Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.

| Standard | No Evidence of Proficiency 0 | Minimally Proficient 1 | Partially <br> Proficient 2 | Proficient 3 | Highly Proficient 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.SP.B. 3 |  | Compare the degree of visual overlap of two numerical data distributions with similar variabilities | Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities. | Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. | Interpret the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. |
| 7.SP.B. 4 |  | Identify measures of center and measures of variability for numerical data from random samples for two populations. | Use measures of center and measures of variability for numerical data from random samples to identify informal comparative inferences about two populations. | Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. | Interpret <br> measures of center and measures of variability for numerical data from random samples to draw comparative inferences about two populations. |

## Proficiency Scale <br> Topic 7: Probability

Priority Cluster/State Standard:
No priority standards for this topic.

Topic 1: Integers and Rational Numbers
Examples for Proficient Level (3):
7.NS.A.1a, Lesson 1-1

## Samuel has \$20 in his savings account before he makes a deposit of $\$ 160$. After 2 weeks, he withdraws \$160. How did Samuel's savings account balance change?

## 7.NS.A.1b, Lesson 1-1

One winter morning, the temperature was - $2^{\circ} \mathrm{C}$. By 11:00 A.M., the temperature had decreased by $3^{\circ}$. At 4:00 p.m., the temperature reached $0^{\circ} \mathrm{C}$. What integer represents the temperature change from 11:00 А.м. to 4:00 р.м.?

| 7am | 11am | $\mathbf{4 p m}$ |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
| Cloudy |  |  |
| $-2^{\circ} \mathrm{C}$ | $\mathbf{3}^{\circ} \mathrm{C}$ | $\mathbf{0}^{\circ} \mathrm{C}$ |

7.NS.A.1c, Lesson 1-4

Find -7-(-8).

Write $-7-(-8)$ as an equivalent addition expression, then add.
$-7+(8)$

Subtracting -8 is the same as adding the opposite of -8 , or +8 .


Lava flows from an active volcano's magma reservoir located below sea level through the magma conduit. How far is the summit of the volcano from sea level?


## 7.NS.A.2a, Lesson 1-6

| Represent $2 \cdot(-3)$ on the number line. |
| :---: |
|  |  |

## 7.NS.A.2b, Lesson 1-8

A machine drill is used to access water under the ground. If the machine drills the same distance each day, what is the change in the location of the bottom of the hole each day?


Kevin played a trivia game. Each correct answer is worth $2 \frac{1}{4}$ points, and each incorrect answer is worth $-\frac{1}{2}$ point. What was Kevin's score?

7.NS.A.2.d, Lesson 1-2

Explain whether each of the following is a rational number.
a. -6.382
b. 1.539981
c. 0.43524982 ...

The decimal terminates, so this is a rational number.

The digits 8 and 1 repeat infinitely, so this is a rational number.

The decimal does not terminate and the digits do not repeat, so this is NOT a rational number.

Topic 2: Analyze and Use Proportional Relationships
Examples for Proficient Level (3):
7.RP.A1, Lesson 2-1

Nathan and Dan were both hired as lifeguards for the summer. They receive their paychecks for the first week. Who earns more per hour?

7.RP.A.2a, Lesson 2-5

## Explain why each graph does or does not show a proportional relationship.

Click on each graph for more information.



7.RP.A.2b, Lesson 2-4

| Maria made two batches of fruit punch. The table at the right shows how many quarts of juice she used for each batch. Write an equation that relates the proportional quantities. | Apple Juice (x) | Grape Juice (y) | $\frac{\text { Grape Juice }}{\text { Apple Juice }}\binom{y}{x}$ |
| :---: | :---: | :---: | :---: |
|  | 5 | 8 |  |
|  | 10 | 16 |  |
| Convince Me! How does the equation change if the amount of grape juice is the independent variable, $x$, and the amount of apple juice is the dependent variable, $y$ ? | The constant of proportionality is |  |  |
|  | An equation that represents this proportional |  |  |

7.RP.A.2c, Lesson 2-6

> Marco needs to buy some cat food. At the nearest store, 3 bags of cat food cost $\$ 15.75$. How much would Marco spend on 5 bags of cat food?

## 7.RP.A.2d, Lesson 2-6



## 7.RP.A.3, Lesson 2-6

## EXAMPLE 1 O Use Proportional Reasoning to Solve a Problem



The ratio of collectible cards DeShawn owns to cards that Stephanie owns is 5:2. Stephanie has 36 cards. How will the ratio of DeShawn's cards to Stephanie's cards change if they both sell half their cards? Explain.

Make Sense and Persevere How can you use proportional reasoning to compare the quantities of cards? © MP. 1


Topic 3: Analyze and Solve Percent Problems

Examples for Proficient Level (3):
7.RP.A.2c, Lesson 3-2

## EXAMPLE 2 Use a Proportion to Find the Part

ACTIVITY

A plan to expand Megan's room will make the length of the room 175\% of the current length. What will be the new length of her room?
Draw a bar diagram to represent the problem and then write a percent proportion to find the new length.
n meters
$1750 \%$

7.RP.A.3, Lesson 3-4

What is the percent change in the price of a gallon of gas, to the nearest whole percent? Is it an increase or a decrease?


Price Per Gallon

Topic 4: Generate Equivalent Expressions

Examples for Proficient Level (3):
7.EE.A.1, Lesson 4-4

Use the Distributive Property to expand the expression $x(-2-0.5 y)$.

## EXAMPLE 2

Factor Expressions with Negative Coefficients


Rodrigo and Jordan each factor the expression $-2 x-6$. Who factored the expression correctly?

Rodrigo uses a positive common factor, 2, to factor the expression.

2 is a common factor of $-2 x$ and -6 .


$$
2(-x-3)=-2 x-6
$$

Jordan uses a negative common factor, -2 , to factor the expression.
-2 is a common factor of $-2 x$ and -6 .

$-2(x+3)=-2 x-6$
7.EE.A.2, Lesson 4-5
15. Higher Order Thinking A hotel manager is adding a tile border around the hotel's rectangular pool. Let $x$ represent the width of the pool, in feet. The length is 3 more than 2 times the width, as shown. Write two expressions that give the perimeter of the pool.


7.EE.B.4a, Lesson 4-1

$$
\begin{aligned}
& \text { - The expression }-120+13 m \text { represents a } \\
& \text { submarine that began at a depth of } 120 \text { feet } \\
& \text { below sea level and ascended at a rate of } \\
& 13 \text { feet per minute. What was the depth of the } \\
& \text { submarine after } 6 \text { minutes? }
\end{aligned}
$$

## Topic 5: Solve Problems Using Equations and Inequalities

## Examples for Proficient Level (3):

7.EE.B.3, 3-ACT Math Lesson

7.EE.B.4a, Lesson 5-1

## EXAMPLE 3

Interpret Quantities and Operations in Equations
Claire bought 8 tickets for a total cost of $\$ 104$. She had used a coupon code
to get $\$ 3$ off each ticket. Let $x$ be the original cost of each ticket. Which of the following equations correctly represents the situation?


8 tickets times the cost per ticket minus a total discount of $\$ 3$


The equation $8(x-3)=104$ represents this situation.

## EXAMPLE 3 ( Compare Algebraic and Arithmetic Solutions

The number of trumpet players is 2 more than $\frac{1}{4}$ of the entire band. How many students are in the band?

An algebraic and an arithmetic solution are shown to find $b$, the total number of students in the band.

Algebraic Solution
$\frac{1}{4} b+2=18$
$\frac{1}{4} b+2-2=18-2$
Subtract 2.
$\frac{1}{4} b=16$
$\frac{4}{1} \cdot \frac{1}{4} b=\frac{4}{1} \cdot 16$
$b=64$
Multiply by 4 .

64

So, there are 64 students in the band.

7.EE.B.4b, Lesson 5-5

## EXAMPLE 2



## Solve Inequalities Using Division by a Negative Value

Solve the inequality $-3.4 m \leq 17$. Then graph the solution.

$$
\begin{aligned}
&-3.4 m \leq 17 \\
& \frac{-3.4 m}{-3.4} \geq \frac{17}{-3.4}
\end{aligned}
$$

Use the inverse relationship between multiplication and division and the Division Property of Inequality to isolate the variable.

$$
m \geq-5
$$

Dividing by a negative value reverses the inequality symbol.


## Topic 8: Solve Problems Involving Geometry

## Examples for Proficient Level (3):

## 7.G.B.4, Lesson 8-5

13. Make Sense and Persevere The circumference of the inner circle is 44 feet. The distance between the inner circle and the outer circle is 3 feet. By how many feet is the circumference of the outer circle greater than the circumference of the inner circle? Use $\frac{22}{7}$ for $\pi$. Round to the nearest hundredth of a foot. ©(MP. 1


## EXAMPLE 1

Solve Problems Involving the Area of a Circle

The floor of a new butterfly conservatory will be a circle with an 18 -foot radius. The material for the floor will cost $\$ 3.95$ per square foot. About how much will the floor cost?


## Try It!

What is the circumference of the rim of a basketball hoop with a radius of 9 inches?

First, multiply the radius by $\square$ to get the diameter, $\square$ inches.

Then, multiply the diameter by 3.14 (an approximation for $\pi$ ) to get
a circumference of about $\square$ inches.

Convince Me! If the diameter is doubled, what happens to the circumference? Explain.


## Topic 6: Sampling to Draw Inferences About Populations

## Examples for Proficient Level (3):

7.SP.B.3, Lesson 6-3

## EXAMPLE 2

0Draw Inferences Using Median and Interquartile Range
Finn and Jonah analyze the measures of center and variability of the data they collected. Do these measures support Finn's assessment of the two data sets in Example 1?

|  | First <br> Quartile | Median | Third <br> Quartile | Interquartile <br> Range |
| :--- | :---: | :---: | :---: | :---: |
| Finn's <br> Data Set | $3 \frac{1}{2}$ | 5 | $6 \frac{1}{2}$ | 3 |
| Jonah's <br> Data Set | $5 \frac{1}{2}$ | 7 | 8 | $2 \frac{1}{2}$ |

## EXAMPLE 1

Use Dot Plots to Compare Populations
Quinn collects data from a random sample of 20 seventhgrade students who participate in a youth fitness program. She compares the number of curl-ups each student completed in thirty seconds last year and this year. What can Quinn infer from her comparison of the data sets?

Number of Curl-Ups That 20 Students Completed

| Last Year | 20 | 27 | 21 | 26 | 22 | 25 | 23 | 23 | 26 | 23 | 24 | 24 | 25 | 24 | 22 | 24 | 23 | 24 | 21 | 25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| This Year | 21 | 30 | 22 | 24 | 29 | 26 | 28 | 26 | 30 | 27 | 27 | 29 | 27 | 28 | 25 | 28 | 25 | 28 | 29 | 23 |

## 7.SP.B.4, Lesson 6-4

Quinn computes the mean and mean absolute deviation (MAD) for each data set. How do these measures support Quinn's inference from the data displays?

|  | Mean | Mat |
| :--- | :---: | :---: |
| Curl-Ups Completed Last Year | 23.6 | 1.4 |
| Curl-Ups Completed This Year | 26.6 | 2.1 |

The mean can be used to describe the data because the data sets do not have outliers.

The mean number of curl-ups completed this year is greater than the mean number of curl-ups completed last year. This supports Quinn's inference.


Curl-Ups Completed This Year


The mean absolute deviation is greater for the number of

