

**Review of Woodridge School District 68
Advanced Learning Placement Procedures**

By

Partners in Advanced Education, Inc.

Partners in Advanced Education, Inc. is a professional consulting company that supports state governments, educational groups, and school district constituencies in data-driven decision making in education. We work with constituencies to research existing policies and practices and then provide recommendations for improvement based on stakeholder goals and objectives. Underlying our work is an emphasis on data use, equity, and resource efficiency, with the primary outcome being an improved educational experience for children.

This work was carried out by Scott J. Peters, Ph.D. Dr. Peters is a former Professor of Assessment and Research Methodology at the University of Wisconsin – Whitewater and the President of Partners in Advanced Education, Inc. He currently serves as the Director of Research Consulting at NWEA, although his work on this project is not connected with NWEA.

Dr. Peters received his Ph.D. from Purdue University specializing in gifted and talented education and applied research methodology. His research focuses on educational assessment, identification of student exceptionalities (particularly those from low-income or underrepresented groups) and gifted and talented programming outcomes. He has published in the *Australian Educational Researcher*, *AERA Open*, *Teaching for High Potential*, *Gifted Child Quarterly*, the *Journal of Advanced Academics*, *Gifted and Talented International*, *Gifted Children*, the *Journal of Career and Technical Education Research*, *Ed Leadership*, *Ed Week*, *Phi Delta Kappan*, and *Pedagogies*. He is the recipient of the Feldhusen Doctoral Fellowship in Gifted Education, the National Association for Gifted Children (NAGC) Research an Evaluation Network Dissertation Award, the NAGC Doctoral Student of the Year Award, the NAGC Early Scholar Award, a two-time recipient of the NAGC Paper of the Year Award, the NAGC Book of the Year Award, and the UW-Whitewater Innovation and Outstanding Research Awards. He has served as the Program Chair of the American Educational Research Association Research on Giftedness, Creativity, and Talent Special Interest Group, on the Board of the Wisconsin Association for Talented and Gifted, and as the National Association for Gifted Children Research and Evaluation Secretary.

Dr. Peters is the first author of *Beyond Gifted Education: Designing and Implementing Advanced Academic Programs* (2013) and *Designing Gifted Education Programs and Services: From Purpose to Implementation* (2017), both from Prufrock Press, and the co-author (along with Jonathan Plucker) of *Excellence Gaps in Education: Expanding Opportunities for Talented Students* (2016), published by Harvard Education Press.

Genesis of this Review

In late March, 2025, Greg Wolcott, Assistant Superintendent for Teaching and Learning for Woodridge School District 68, first reached out to Scott Peters about a gifted education program review and consultation. In September, 2025, the parties agreed on a scope of work and Partners in Advanced Education (PIAE) began its review based on the following challenges expressed by the District:

1. Existing identification procedures are resulting in a large percentage of district students being identified for services
2. Identification rates vary widely across district elementary buildings and even within buildings from year to year
3. Staffing and planning are challenging given relatively small elementary buildings
4. Population of students identified as gifted does not mirror the overall district demographics
5. Are existing services defensible and meeting the needs of students identified for them? Particularly in science and social studies.

This review was based on communications with District staff, a review of all available materials related to advanced learning in the District, and original data analysis of data provided by the District. A draft of this report was circulated in December 2025, and finalized In January 2026.

Background

The overall concern is twofold: 1) the gifted population is getting too large and 2) the size of the gifted population is unequal across schools, making it difficult to provide services. Examples were given of advanced 7th grade math now including approximately 75 of 391 total student and elementary grades where 7 of 40 students are identified, thus requiring students to be split across two classrooms.

Elementary Services

Services and identification can be grouped into two types. The first covers grades three through six with identification happening at the end of second grade for placement starting in third grade.

At the grade three through six level, services consist of multi-grade, pull-out, critical thinking activities for approximately 60 minutes daily (grades $\frac{3}{4}$ and $\frac{1}{2}$). Identification is based on the Naglieri General Abilities Test (NGAT) using both district and subgroup norms. The all-grade, districtwide average NGAT composite standard age score is calculated followed by the calculation of a cut score representing +1.5 standard deviations (roughly the 93rd percentile) above the district mean. Students who scored at or above this cut score at the end of 2nd grade are placed in the gifted cohort the following year. The same process is repeated for each subgroup (e.g., EL, low-income, and racial-ethnic groups) with students being identified if their NGAT score exceeded +1.5sd for their subgroup. For the Spring 2025 identification season, the NGAT cut score for each subgroup ranged from 117 to 132 (roughly a full standard deviation difference in range), although no student would have had to meet a cut score higher than a 126 as that was the district-wide cut score (see below). Finally, for students who just missed either the district or subgroup cut scores, NGAT subscores, iReady data, and/or teacher recommendations are also considered.

Spring 2025 NGAT Placement Cut Scores - District and Subgroup

Level 1:	NGAT		Total Composite 1.5 Std Dev
District Norms	Grades 2-7	All	125-126-127
Level 2:	Grades 2-7	ELL	116-117-119
Subgroup Norms	Grades 2-7	Asian	131-132-133
	Grades 2-7	Black	116-117-118
	Grades 2-7	Hispanic	117-118-119
	Grades 2-7	Other/Multi	116-119-122
	Grades 2-7	White	128-129-130
	Grades 2-7	Income	118-119-120

Although district elementary buildings do vary in size (~350 to ~420), gifted identification rates vary even more. For the 2025 - 2026 school year, identification rates at each grade level (3-6) ranged from one student to 12, with identification rates for third-grade ranging from 4% to 18%. This is a perfect example of the challenges of high rates of identification as well as inconsistent identification across schools. It's difficult to provide services if a multi-grade program only includes a few students. Likewise, it's difficult to serve 25% of students across two grades in a weekly pull-out format.

Services are also provided in Grades K-2, but more informally. And since these services are not based on formal identification decisions, they were not the focus of this report.

Middle School Services

The second type of services covers grades six through eight with identification happening at the end of 5th grade for placement in accelerated 6th grade math or the end of 6th grade for placement in 7th grade advanced ELA, math, science, or social studies. Within this group of services there is some variability when it comes to identification. Advanced math students in grades 7 and 8 are, mostly, those who completed accelerated math successfully in grade 6, though there are opportunities to enter this track later on. Placement in sixth grade accelerated math [requires a +1.5SD](#)

(~93rd percentile) NGAT quantitative score (district or subgroup norm) and a 90th percentile or higher score on iReady. In an effort to decrease the number of students, for the 2025 - 2026 school year, the iReady cut score was raised to 95th percentile. This appears to have only had marginal effects.

Placement in advanced social studies is (mostly) based on teacher recommendation, NGAT-Verbal, and iReady Reading scores. Advanced social studies and ELA are essentially the same thing as services are taught as a combined block. As a result, most students identified as advanced in ELA are also served in advanced social studies. Similarly, placement in advanced science is (mostly) based on teacher recommendation, NGAT-Quantitative, and iReady math scores. In short, there are no domain-specific identification criteria for advanced science or social studies.

What's described above highlights the motivating question of this analysis: if the district is using cut scores of the 90th, 93rd, and 95th percentiles, how can it be that so many students are identified while identification rates by school are so disparate? Put differently, why are identification rates too high in general and so inconsistent across schools?

1. Liberal use of multiple pathways.

For the elementary multi-grade cohorts, the District identifies students when compared to all other students in the District OR when compared to other students in a given subgroup. This is a classic example of [multiple OR combination rules](#) - students are identified if they exceed the district norm OR Subgroup A norm OR Subgroup B norm OR Subgroup C norm (though the subgroup norm pathways only apply to members of those groups). For example, an English learner (EL) can be identified for the gifted cohort if she exceeds the +1.5sd cut score on the NGAT when compared to all other students in the district OR if she scores above ~93% of other English learners in the district (i.e., +1.5sd compared to other ELs). As a rule, as a district increases the number of pathways to identification, so too will they increase the number of students identified, particularly when performance on those pathways is only moderately correlated, like is the case of subgroup norm pathways. As a result, part of the reason for atypically large service populations at any individual grade level is that students have multiple opportunities or pathways to be identified. Consider an example where students are identified for a program if they score at or above the 93rd percentile on any one of three tests, and performance on those tests is strongly correlated (.70). This placement system will identify roughly 14% of students instead of the 7% that might be presumed by a cut score of the 93rd percentile. When the pathways are correlated more weakly (.50), this increases to ~16%.

Add enough pathways and [the vast majority of students will be identified as gifted](#). The upside to this is few students are missed due to random change or measurement error. The downside is that it errs on the side of identification, which means a larger population identified than might otherwise be expected based on the cut scores.

2. The District identifies in multiple grade levels.

Students are NGAT tested in every grade two through seven, although this will change to only 2nd and 6th in spring 2027. As a result, students have “multiple bites at the apple” to be identified. What's more, there are informal opportunities

to be added in years when universal testing does not happen. Just like with multiple pathways, multiple opportunities / grades to be identified represent another OR combination rule. A downside of this is that it errs on the side of false positives - students who met the criteria once, simply due to measurement error, are identified. They need not meet any other qualifying scores. The more opportunities students are given to be identified, the larger aggregate percentage will be identified.

3. In middle school advanced classes, students can be identified via a mix of aptitude OR achievement scores.

To be identified, students need to achieve certain iReady scores AND NGAT scores. But in math, they can also be “identified” via successfully completing a prior year’s accelerated math class. Sometimes borderline students can also be identified via a look at last year’s scores. These are further examples of OR combination rules, which will increase the number of students identified.

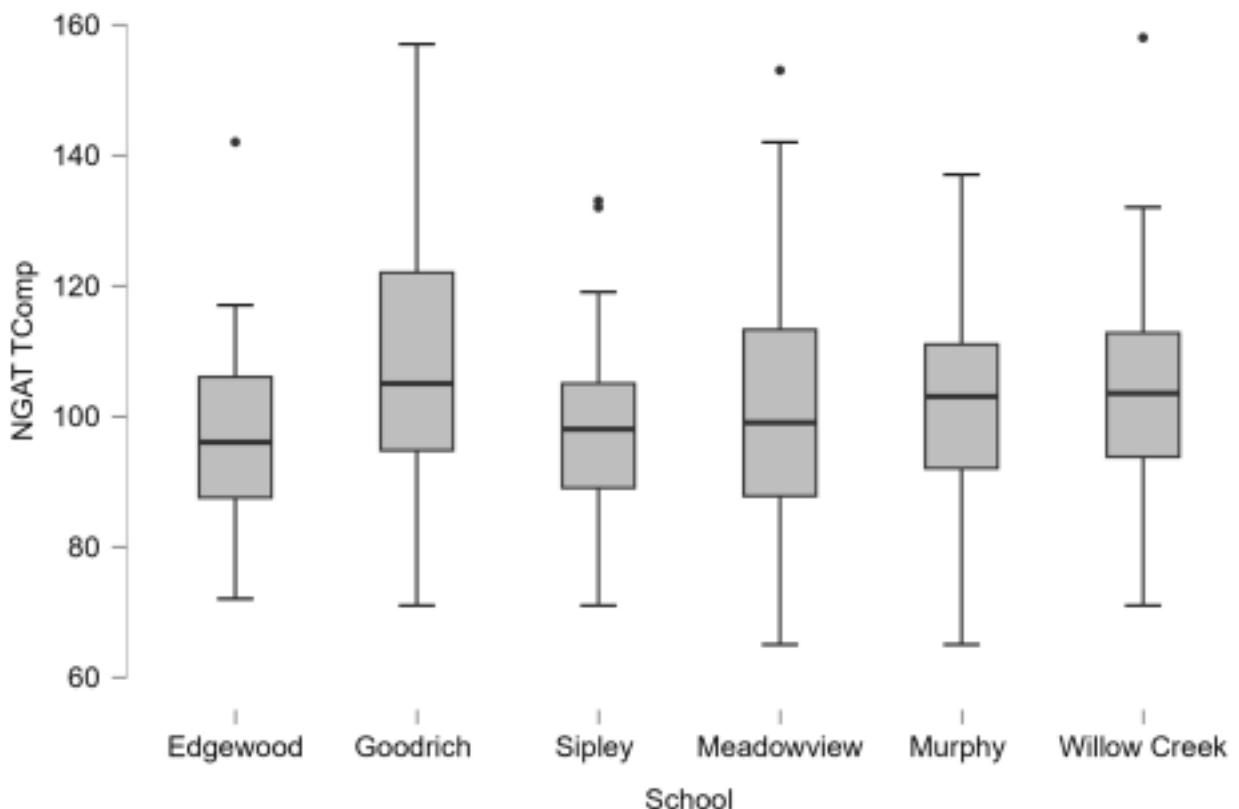
4. At least in the elementary multi-grade cohorts, the District’s practice is to be flexible with its identification criteria.

The standard identification criteria is a +1.5SD on the composite NGAT, but they also “take a look” at the individual subscale scores for students who are borderline. Similarly, if they are “close” on aptitude, the District will look at achievement for reasons to identify. These are all examples of erring in the student’s favor, which has its virtues. But it also results in a larger identified population than if the criteria were more strict.

5. The District is much higher achieving than the state as a whole. In spring 2024, 14% of the District’s students were at the “exceeded” level in math and 22% were at that level in Science (see figures below). So the district is higher-scoring than the average in Illinois. As a result, when it applies a cut score of the 93rd percentile, it will identify $>7\%$ of its students. This really only comes into play for the “content replacement” courses starting in 6th grade. That’s the only place where iReady comes into play for ID, which applies national norms. In the elementary cohorts described above, district and subgroup-norms render the overall standing of the district compared to the state or nation irrelevant. But for an above-average scoring district, a cut score such as the 93rd percentile using a national norm will identify more than 7% of its students. This also explains why identification rates can vary so widely across schools. When a single cut score is applied uniformly across schools that differ on their underlying score distributions, the result will be different proportions of those schools identified.

6. COVID Recovery

Although it's not certain what the cause might be, it's clear from the IAR data presented below that the District's achievement profile has been increasing, particularly in spring 2023 and spring 2024, the same years where gifted identification rates went up. If the District's score distribution is increasing while the national norm is stable, the result would be more students meeting any particular cut score. This effect would not apply to any district-norm placement criteria (because the norms are essentially updated every year), but would impact placement and contribute to high rates of identification in the content-replacement classes, which appear to have the largest proportions of students identified (i.e., roughly 25% of junior high students are now identified as gifted).


This could also be coming into play if test norms are from a few years ago, but students in the district have continued to improve post COVID. But district data from Spring 2025 suggest an average NGAT composite of ~102 making this less plausible as a contributor to increased identification rates.

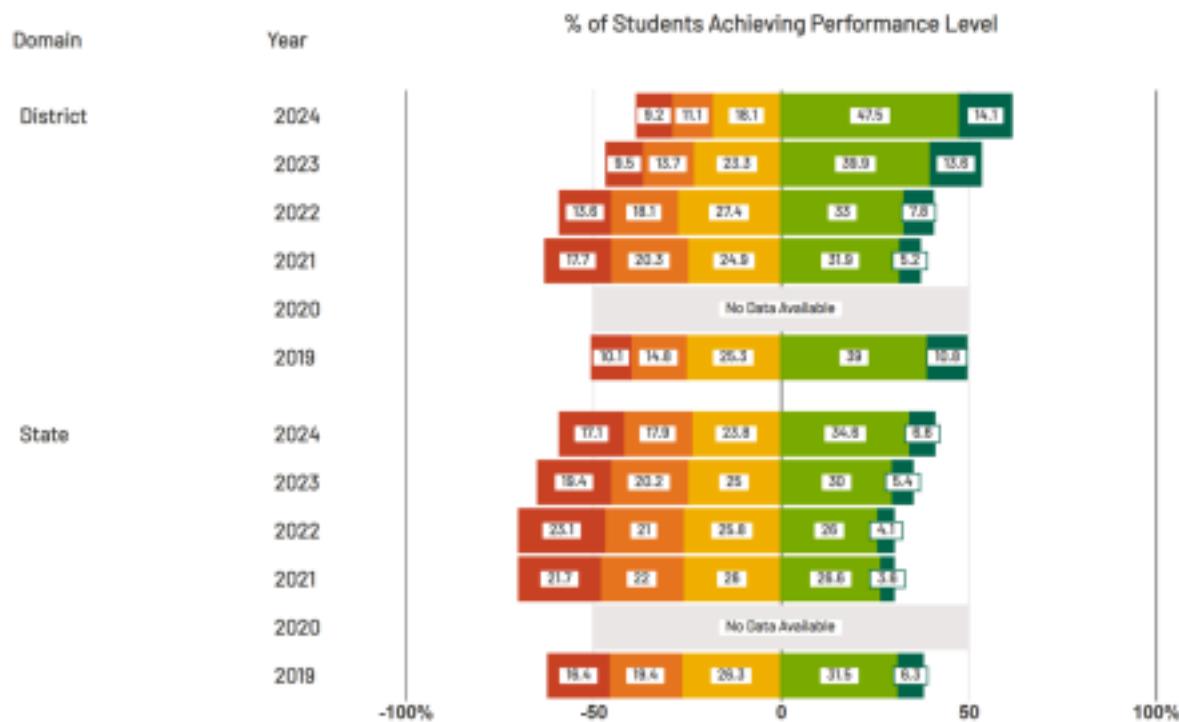
7. A Lack of Off Ramps

Gifted and talented programs nationally tend to emphasize multiple opportunities to be identified - multiple bites at the gifted and talented apple. The rationale is that the more opportunities there are to be identified (like with OR combination rules), the fewer students will be accidentally missed. And this is true, but it also results in an ever growing service population. In Woodridge, students have multiple opportunities to be identified as they move through K-12. Their first chance to be identified is at the end of 2nd grade, but then there is a new round of identification for 6th grade accelerated math. Students can also be placed in 7th grade Advanced Math based on a new round of data, or via successfully completing 6th grade Accelerated Math. Because students are rarely "deidentified" each successive wave of identification serves only to add new students - it never subtracts students who might not be a good fit. There are virtues to this, but it will contribute to a larger service population, especially in the later grades, which is exactly what the district sees in classes like Junior High Advanced Math.

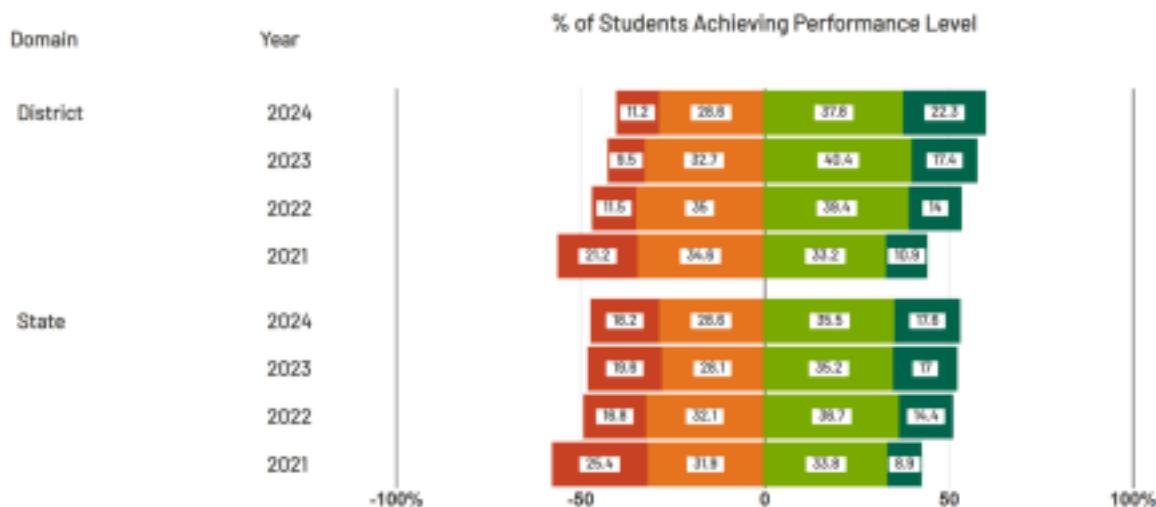
Why is there inconsistent identification across buildings?

1. Some schools are higher scoring than others and the district relies on district norms as the primary pathway for elementary identification. District norms will yield equal identification rates across buildings in cases where each building is similar in terms of whatever scores are being used to make identification decisions. For example, if every school showed an average NGAT score of 100, then when the +1.5sd district norm were applied (an effective cut score of the 93rd percentile), each building would identify roughly 7% of its students (the actual score needed to be identified is the same at each school). However, in Woodridge, this is not the case. Using 2nd grade NGAT data, I examined mean scores across all six elementary buildings. In doing so I identified two clusters of schools. Edgewood, Sipley, and Meadowview showed mean scores of 96, 98, and 99, respectively, whereas Goodrich, Murphy, and Willow Creek showed mean scores of 105, 103, and 104, respectively. When I looked at the distribution of the scores across buildings, the differences became more stark (see below).

As noted above, the district's overall NGAT cut score is a 126. As a result, if the district did not rely on group-specific cut scores, it's likely few, if any, students would be identified at Edgewood or Sipley. Regardless of the specific cut score,


any criteria applied equally across buildings will identify proportionally more students at Goodrich than at Edgewood. This is exacerbated by the fact that Goodridge simply has more students than Edgewood, again creating an opportunity for more students to be identified at some schools than others. The virtue of a district norm is the same level of whatever is being measured will be required to be identified at every building. This has benefits when it comes to services. It's easier to meet student needs if they have a similar baseline. The downside is that if the score distributions are different across buildings, which they are, the same score will identify different proportions of students at each building.

2. Subgroup representation differs by school.


The district's practice in grades 3-6 is to make identification decisions based on district norms OR subgroup norms. As a result, buildings with larger proportions of subgroups (or more students in those subgroups) will have more students identified. This is because those pathways only exist where those students exist or only apply to members of those subgroups. Further, those pathways will identify more students from those groups where they are more represented. For example, Sipley is the largest school (about 60 students per grade) and also has the most-diverse student population (~20% each Black and Hispanic, ~44% FRL, and 15% EL). It's not a coincidence that that building also identified the second most 3rd graders last year of any building (6 total) despite having the second lowest NGAT scores. Many more of its students were eligible for subgroup norm pathways.

Woodridge and Illinois IAR Achievement Levels for Math and Science

Did Not Meet Partially Met Approached Met Exceeded

Emerging Developing Proficient Exemplary

Identification Recommendations

Before getting into specific recommendations for identification systems or policy, it's important to call out the main criteria by which identification systems should be designed or specific assessments should be selected. Put simply, there is no such thing as a "good" or "bad" data point when making placement decisions. Instead, the goodness or badness is dependent on how well it measures readiness for or probability of benefitting from a *specific* service. For example, the Medical College Admission Test might be perfectly appropriate as a placement data point for admission into medical school, but would be inappropriate for law school placement decisions. The same rule applies with gifted education or advanced learning opportunities - the skills, abilities, and dispositions measured by the identification system should broadly align with those fostered in the resulting service.

Woodridge is an excellent case study for this issue because it offers services that are more enrichment based (e.g., the cohorts starting in 3rd grade) and those that are more akin to acceleration or content replacement (e.g., junior high advanced math). In the case of the former, the services are enrichment based and designed to serve "globally gifted" critical thinkers. For this reason, relying more on measures of ability and reasoning is appropriate. Conversely, in the case of Junior High Advanced math, students are literally learning content one or more years advanced. That is the service. As a result, placement should be in large part based on mastery of prerequisite math skills. For this reason, the balance should shift more to measures of academic skills and rely less on quantitative or verbal reasoning. There is no perfect match or perfect balance (i.e., should iReady receive any weight in placement in gifted clusters), but the general principle of alignment between identification and services should guide the design of all placement systems.

What could be done to get a smaller and more predictable gifted population?

1. First, the District should discontinue the use of racial- or ethnic-group specific norms.

There are two reasons why the district should discontinue the use of racial or ethnic group-specific norms in making identification decisions. First, while this should not be seen as any kind of legal opinion, it's likely that making identification or program placement decisions based, in part, on the race or ethnicity of the student could create legal challenges. This is based on a [recent 4th circuit case](#) and also some prior case law in Illinois (discussed briefly [here](#)).

In 2002, [Florida also modified its "Plan B" identification policies](#) to specify that underrepresented groups for the purpose of those policies only include English Learners and low-income students. This was done over concerns that

including protected classes like racial / ethnic groups would not be legally permissible. Importantly, the same legal challenges likely do not apply to placement systems that rely, in part, on language proficiency (i.e., ELL norms) or the socioeconomic status of the student. As a result, income-group and language-group specific norms are likely permissible and, in fact, are part of Florida's statewide "Plan B" identification pathway, whereby students who are English Learners or who are low income need only meet lower identification cut scores (similar to the district's group-specific pathways). However, and importantly, this does not apply to specific racial / ethnic groups.

In the end, regardless of its impact on the size of the gifted population or the proportion of each school identified as gifted, the District should discontinue the practice of taking race or ethnicity into account when making identification decisions. Doing so would have one positive and one negative side effect. On the positive side, removing some of the existing multiple pathways to identification would decrease the number of students identified. Unfortunately, these would be students from historically underrepresented groups. But regardless of the consequences, it probably needs to happen. Hopefully, either a move to building norms (see next section) or retaining income- and ELL-specific norms would counteract these effects.

The second reason the district should discontinue this practice is more conceptual. Group-specific norms can make sense because they can better yield information on which students are advanced *relative* to experience, opportunity, or environment. This is the same reason why achievement percentiles are often grade or age based - they compare a given student's score to others who have had roughly similar opportunities to learn the content (with age or grade as a proxy). It would make little sense to compare the math achievement of a 4th grader to that of an 8th grader - one has had much more time to learn math. But age is not a perfect proxy for opportunity. That's where group-specific norms can come in - some 8yr olds have had many more opportunities to learn math than others. EL or income-based group-specific norms can help here because English language proficiency and income are decent measures of opportunity to learn. Students who are eligible for free or reduced price meals are likely to have had fewer opportunities to develop their abilities than those who come from higher income families. The same is true for students who are still learning English. As a result, if the goal is to obtain an indicator of who is "advanced" given a certain amount of opportunity, group-specific norms provide a better comparison group. Race or ethnicity simply do not provide the same kind of proxy for opportunity. While it is true that many Black students face structural disadvantages, race is

not as direct a measure of opportunity as something like family income. As a result, in addition to the legal complexities noted above, income and language indicators are simply better proxies for opportunity than are race or ethnicity.

2. Identify students based on building norms.

One of the challenges expressed by the District is the inconsistency of identification a) over time / school years and b) across schools. In the 2023 - 2024 and 2024 - 2025 school years, identification rates increased with wide variability across school buildings in terms of the proportion of students identified as gifted. Murphy identified three students for third-grade services for an identification rate of approximately 4%. Compare this to Edgewood and Simply where seven and nine students were identified (respectively) for identification rates of about 18%. These disparate identification rates make sense given a) schools vary in their score profile (i.e., how high or low they score, on average, on any given assessment) and b) schools also vary in which populations are present. A school with more subgroups will also have more identification pathways present (because of multiple “or” rules). Instead of making identification decisions based on district norms (plus some group-specific norms) the District should move to building norms.

Building norms have a direct effect on the size of the gifted population in each school and an indirect effect on equity. Instead of identifying students who score +1.5sd or more when compared to the rest of the district, building norms would identify those students who score +1.5sd when compared to their school-grade peers. This has a very literal effect on identifying the same proportion of each school’s population as gifted (i.e., if the criteria is the top 10% of each school, then 10% of each school will be identified, ignoring for the moment any group specific pathways). Moving in this direction would make the service population consistent from year to year and school to school and the District could adjust the actual eligibility cut score as needed to obtain a certain size service population. For example, if one teacher can handle 10% each of 3rd and 4th graders for a multi-age pull-out program, then the 90th percentile building norm might make sense.

The indirect effect is that building norms have been shown across multiple studies to improve the proportional representation of students from historically underrepresented subgroups. [The devil is in the details](#), but local norms are a research-backed way to improve equity, without having to rely on multiple pathways or something more explicit like group-specific norms. Before

considering ELL-specific or income-specific norms, the District should explore what the resulting gifted population would look like if building norms were used for 3-6 identification. The good news is that building norms and even EL-specific norms can be automatically provided in NGAT reports. In the “generating reports” section of the NGAT report website there are options for norm type (see below). This can allow the district to see how something like school norms for each school compare to district or national norms.

Importantly, building norms make the most sense for the elementary gifted cohorts, but less for the middle school advanced / content replacement courses. In those cases, because there is only one middle school (Thomas Jefferson), building norms are defacto district norms. As a result, when using 5th grade data for placement in 6th grade accelerated math, the district should continue using district norms (and not building norms based on the building the student attends for 5th grade).

3. Retain or consider EL and/or income-based group-specific norms. As discussed in the first recommendation, eligibility for free-or-reduced price meals or English learner services are not protected classes in the same way as racial / ethnic minority populations. As a result, identification criteria can take income or EL status into account. Moving to only applying subgroup norms on these two groups (and discontinuing race / ethnicity) will help to equalize identification rates across schools because each of the district's elementary schools have a more-similar FRL-eligible population than racial-ethnic populations. For example, the elementary schools range from ~30% to ~50%. As a result, some students at every school would be eligible for FRL-specific pathways. A result of low-income students being present at every school and in meaningful numbers

will be more-consistent proportions of students identified through this pathway across buildings. The same is not true with race- or ethnic-group specific pathways. All of that said, the district may want to first evaluate how well building norms alone improve equity before continuing to apply group-specific norms.

4. Rather than identify students based on NGAT performance OR iReady performance, take the average of all available *relevant* data points. Making identification decisions based on the average of multiple data points has some important advantages. First, and perhaps most importantly, it allows students to be identified if they have high ability or high achievement, but without scores on either being too low. For example, if a 90th percentile average is required, a student can earn a score of the 85th percentile on one as long as they receive a 95th percentile on the other (note you cannot calculate the mean of percentiles - this is just an example). It is the average of multiple scores that is used to make identification decisions. This allows them to have a bad day and still get identified. Similarly, it compensates for the natural measurement error inherent in any single test score. But it also has the benefit of simplicity - there is no need to consider multiple pathways (e.g., high NGAT OR high iReady, high Fall OR Spring iReady) when all of the data are aggregated via a single pathway. This will simplify the identification process.

To do this, the District would first need to decide which data points to use for which services. As outlined at the start of this section, because the goal of the elementary gifted services is to serve globally gifted students, it probably makes sense to include all NGAT subscores and math and reading iReady scores (likely spring of the year prior to placement). The next step would be to put all of these scores on a common scale (likely a z-score) so that they could be averaged together (percentiles cannot be averaged). Students are then rank-ordered from highest to lowest on that average with the top X% of students identified (7% if the existing percentile cut score were continued). The end result would be students placed in the 3rd grade gifted cohort if they scored in the top X% on the average of reading achievement, math achievement, and ability. But there is no golden rule when it comes to which data points should be considered for placement in something like an enrichment-, critical-thinking based cluster program.

Importantly, the District need not weigh all data points equally. Perhaps they want to give greater weight to ability because of its language-reduced nature, especially for elementary gifted cohorts. If so, twice the weight could be given to the NGAT scores as is given to iReady scores. Or perhaps avoiding achievement / iReady completely is more appropriate for the multi-grade cohort program.

Similarly, when considering the content-replacement courses at grades 6-8, the district might want to reverse that and put more weight on achievement (i.e., iReady) given the accelerated academic content of the program. There is no single right way to do this, but the content / tests included should be balanced based on the content of the services provided. Regardless of which data points the District chooses to use for each service it offers, taking the average of multiple data points is preferable to considering each one individually through multiple OR or AND combination rules, particularly because the average will result in a more-predictable service population from year to year and school to school. When placement is based on the average of multiple data points, the correlation between those data points (or the pathways that use them) is not a factor. This is relevant because the relatively modest correlation between existing pathways is likely part of the reason for the District's large gifted population.

5. Explore Criteria for Class or Program Success

There should be procedures in place for identifying when students are not being successful in a service and under what circumstances they should be transitioned out. This might be a rare occurrence, but it's important to have criteria in place before it happens. For example, if a student earns a D in 6th grade Accelerated Math, should he or she continue to 7th grade Advanced Math? Relatedly, what does it mean or look like for a student to not be benefitting from a gifted cluster? The district should have these conversations and develop policies so that they are ready should such cases occur. This will have a small, secondary benefit of decreasing the size of the service population. It may feel a tad unkind, but there's nothing wrong with a student finding out that his or her needs are better met by Tier I core instruction.

Although not the primary focus of this evaluation, below are some recommendations related to the District's gifted and talented / advanced learning services.

1. Advanced science and social studies courses should be modified to be more akin to content replacement or else discontinued as separate options. The district's Advanced Social Studies and Science courses are distinct from core offerings, as they are specifically designed around above-grade-level standards. However, despite this accelerated design, the current identification criteria remain nebulous and lack the subject-specific rigor found in ELA and Math. To justify their continued existence, these courses must transition to a true **content replacement** model or be discontinued as separate options. Currently, Advanced Social Studies lacks a

consistent, independent pathway for identification; students are largely placed based on ELA scores rather than social studies-specific aptitude. This creates a disconnect: the curriculum is designed to be advanced, but the district cannot effectively prove that the students enrolled are the only ones who would benefit from it. Unless the curriculum is standardized as above-level, content-replaced material—mirroring the junior high advanced math track—the district is maintaining separate sections that complicate the master schedule without a defensible rationale for the grouping. The same issue hampers Advanced Science. While these courses are designed with accelerated content—such as 7th-grade chemistry and 8th-grade physics focuses—they are "advanced" in name only if the identification process does not match the curriculum's intent. Without specific criteria to determine which students require this acceleration, these sections serve primarily to bifurcate the student body and create scheduling bottlenecks. By contrast, a clear content-replacement model, such as 8th graders taking high school Biology, offers a concrete objective. In that scenario, the district could apply specific criteria to identify the skills and dispositions required for high-school-level success. Currently, the lack of subject-specific identification for science and social studies makes it difficult to defend these services or justify the administrative strain they place on school scheduling.

2. It's considered a best practice to focus on enrichment in the early grades and then transition to specialization and acceleration (i.e., content replacement). However, **the District should still proactively seek out students in K-5 who are ready for subject- or full-grade acceleration.** The District currently does have some young students full-grade accelerated. But a side benefit of acceleration is the potential to decrease students in a separate gifted program. For example, if a student is moved to 4th grade math at the start of 3rd grade, that student might have her needs met in a "regular" 4th grade classroom and as a result not need to be served in the multi-grade cohort. As a result, proactive acceleration can be a way to actually decrease the number of students who require something like a Tier II intervention (i.g., the gifted clusters). This is not a reason to randomly accelerate students, but five of the six elementary buildings have students scoring at the 98th or 99th percentiles in math at the start of 2nd grade. Four of the six meet this level in reading. It's likely that every building has some students that would be more-appropriately served in the next grade level than their age-based grade level. Proactively seeking these students out would be a good supplement to the planned experiences offered in the early grades. This also aligns with requirements under the [Illinois Accelerated Placement Act.](#)

